CORRIGÉ DE L'ÉPREUVE DE MATH ENSAE 2001

Première partie

- **I.1.** (\Rightarrow) On prend $\varepsilon_n = \operatorname{sgn}(x_n)$, dans ce cas $\varepsilon_n x_n = |x_n|$ donc $\sum |x_n|$ converge. (\Leftarrow) $\sum \varepsilon_n x_n$ est absolument convergente donc convergente.
- I.2. Montrons que $\sum x_n$ est inconditionnellement convergente ssi $\sum ||x_n||$ converge. (\Rightarrow) On prend une base \mathcal{B} de E et, comme les normes sont toutes équivalentes, on choisit (sans restreindre la généralité de la démonstration) $||x|| = ||x||_{\infty}$ dans cette base. Si on écrit $x_{n,i}$ les coordonnées de x_n dans la base \mathcal{B} de E alors $\sum x_{n,i}$ est inconditionnellement convergente donc absolument convergente vu la première question et ceci pour tout i. Comme chaque série coordonnée est absolument convergente, on en déduit que $\sum x_n$ est absolument convergente.
 - (\Leftarrow) La réciproque est évidente.
- **I.3.** $x^{(n)} = (0, \dots, 0, \frac{1}{n+1}, 0, \dots)$ donc $\sum_{n=0}^{N} \varepsilon_n x^{(n)} = (\varepsilon_0, \frac{\varepsilon_1}{2}, \dots, \frac{\varepsilon_N}{N+1}, 0, \dots)$ qui converge vers la suite $x \in c_0$ définie par $x_k = \frac{\varepsilon_k}{k+1}$ car $\left\| x \sum_{n=0}^{N} \varepsilon_n x^{(n)} \right\|_{\infty} = \frac{1}{N+2}$. Conclusion : la série $\sum x^{(n)}$ est inconditionnellement convergente.
- **I.4.** On a $||x^{(n)}||_{\infty} = \frac{1}{n+1}$ et la série $\sum ||x^{(n)}||_{\infty}$ diverge. Ceci prouve qu'en dimension infinie on n'a pas l'équivalence de la question 2.

Deuxième partie

II.1. K est un compact (fermé borné en dimension finie), Φ est continue ($A \mapsto \det A$ est continue en tant que fonction polynomiale, $u \mapsto A$ est continue en tant qu'application linéaire en dimension finie et $x \mapsto |x|$ est continue) donc Φ est bornée sur K et atteint ses bornes.

Conclusion: il existe $u_0 \in K$ tel que $\sup_{u \in K} \Phi(u) = \Phi(u_0)$.

- **II.2.** On note $\beta_0 = (e_1, \dots, e_n)$, $\beta = (\varepsilon_1, \dots, \varepsilon_n)$ et on définit $v \in \mathcal{L}(\ell_2^n, E)$ par $v(e_i) = \varepsilon_i$, on a évidemment $\Phi(v) = 1$. On pose alors $w = \frac{v}{|||v|||} \in K$, $\Phi(w) = \frac{1}{|||w|||^n}$ par conséquent $\Phi(u_0) \ge \Phi(w) > 0$ et en conclusion u_0 est inversible.
- II.3. On remarque que si $|||w||| \le 1$ alors $\Phi(w) \le \Phi(u_0)$ (en effet, en posant $v = \frac{w}{|||w|||}$ alors $\Phi(w) = \underbrace{|||w|||^n}_{\le 1} \underbrace{\Phi(v)}_{\le 0}$) donc, comme $|||u_0 + \varepsilon v||| \le 1 + \varepsilon |||v|||$ (inégalité triangulaire) alors, en posant $w = \frac{u_0 + \varepsilon v}{1 + \varepsilon |||v|||}$ on obtient

$$\left| \det \left(\frac{u_0 + \varepsilon v}{1 + \varepsilon |||v|||} \right) \right| \le |\det u_0|$$

soit $|\det u_0| \det(I + \varepsilon u_0^{-1} \circ v) \leq |\det u_0| (1 + \varepsilon |||v||||)^n$ et on obtient le résultat demandé en simplifiant par $|\det u_0| > 0$ (si $\det(u_0 + \varepsilon v) = 0$, c'est immédiat).

Remarque: on a noté det u_0 le déterminant de la matrice de u_0 ce qui correspond ici à une notation impropre car u_0 n'est pas un endomorphisme.

II.4. Résultat classique sur les polynômes caractéristiques que l'on peut également démontrer en dérivant la fonction polynomiale $P(t) = \det(I_n + tA)$ où A est la matrice de f dans la base canonique de \mathbb{R}^n :

$$P(t) = \det(C_1(t), \dots, C_n(t))$$
 avec $C_i(t) = (ta_{1i}, \dots, 1 + ta_{ii}, \dots, ta_{ni})^{\mathrm{T}}$
on a $P(0) = 1$ et

$$P'(t) = \sum_{i=1}^{n} \det(C_1(t), \dots, C'_i(t), \dots, C_n(t)) \text{ avec } C'_i(t) = (a_{1i}, \dots, a_{ii}, \dots, a_{ni})^{\mathrm{T}}$$

donc $P'(0) = \operatorname{Tr}(A)$ puisque $\det(C_1(0), \dots, C_i'(0), \dots, C_n(0)) = a_{ii}$ et finalement $\det(\mathrm{Id} + tf) = 1 + t \operatorname{Tr}(f) + o(t) \operatorname{car} P(t) = P(0) + tP'(0) + o(t).$

II.5. On rassemble les résultats des deux questions précédentes

semble les résultats des deux questions précèdentes
$$1 + t \operatorname{Tr}(u_0^{-1} \circ v) + o(t) = \det(\operatorname{Id} + tf) \leqslant |\det(\operatorname{Id} + tf)| \leqslant \underbrace{(1 + t|||v|||)^n}_{=1 + nt|||v||| + o(t)}$$

soit, en soustrayant 1 et en divisant par t > 0, on obtient $\text{Tr}(u_0^{-1} \circ v) \leq n|||v||| + o(1)$ et, en passant à la limite quand $t \to 0^+$,

$$Tr(u_0^{-1} \circ v) \le n|||v|||.$$

Ensuite on a $\sup\{\operatorname{Tr}(u_0^{-1}\circ v)\mid v\in\mathcal{L}(\ell_2^n,E) \text{ avec } |||v|||\leq 1\}\leq n \text{ or, pour } v=u_0 \text{ on a}$ égalité donc

$$\sup \{ \text{Tr}(u_0^{-1} \circ v) \mid v \in \mathcal{L}(\ell_2^n, E) \text{ avec } |||v||| \le 1 \} = n$$

Troisième partie

III.1. **a.** Soit $v = u_0 \circ P$, on applique le II.5, d'où

$$Tr(u_0^{-1} \circ v) = Tr(P) = n - i \le n|||u_0 \circ P|||$$

ce qui donne le résultat.

b. $|||u_0 \circ P||| = \sup ||u_0 \circ P(x)||$ et comme la sphère unité est compacte, la borne supérieure est atteinte donc $\exists x \in \ell_2^n$ t.q. $||x||_2 = 1$ et $|||u_0 \circ P||| = ||u_0 \circ P(x)||$.

Soit
$$y = \frac{P(x)}{\|P(x)\|_2} (P(x) \neq 0 \text{ car } \|u_0 \circ P(x)\| > 0) \text{ alors, comme } \|P(x)\|_2 \le 1,$$

$$||u_0(y)|| = \frac{||u_0 \circ P(x)||}{||P(x)||_2} \ge |||u_0 \circ P||| \ge \frac{n-i}{n} \text{ et } ||y||_2 = 1.$$

III.2. On sait qu'il existe un vecteur $y_1 \in E$ t.q. $||y_1||_2 = 1$ et $||u_0(y_1)|| = 1$. Soit $F = \text{Vect}(y_1)$ alors, grâce à la question précédente, on sait qu'il existe $y_2 \in F^{\perp}$ t.q. $||y_2||_2 = 1$ et $||u_0(y_2)|| \ge \frac{n-1}{n}$. En outre on a $(y_1|y_2) = 0$. On procède alors par récurrence. Supposons construite la famille orthonormale (y_1, \dots, y_k)

vérifiant $\forall j \in [1, k], \|u_0(y_j)\| \geq \frac{n-j+1}{n}$. On prend $F = \text{Vect}(y_1, \dots, y_k)$ et on choisit

 y_{k+1} à l'aide de la question III.1.b. On a effectivement $||u_0(y_{k+1})|| \geq \frac{n-k}{n}$, $||y_{k+1}||_2 = 1$ et $(y_j|y_{k+1})=0$ pour $j\leq k$ car $y_{k+1}\in F^{\perp}$. Ceci achève la récurrence.

Conclusion : on a ainsi construit une base orthonormale (y_1, \ldots, y_n) de ℓ_2^n telle que $||u_0(y_j)|| \ge \frac{n-j+1}{n}$ pour tout $j \in [1, n]$.

III.3. Si
$$j \le m$$
 alors $\frac{n-j+1}{n} \ge \frac{n-m+1}{n} = \frac{n-[n/2]}{n} \ge 1/2$ donc $\frac{1}{\|u_0(y_j)\|} \le 2$.

Posons $b_i = \frac{a_i}{\|u_0(y_i)\|}$, $b_i^2 \le 4a_i^2$. On a $\sum_{i=1}^m a_i v_i = \sum_{i=1}^m b_i u_0(y_i) = u_0 \left(\sum_{i=1}^m b_i y_i\right)$ d'où $\left\|\sum_{i=1}^m a_i v_i\right\| \le \underbrace{\|\|u_0\|\|}_{=1}$. $\left\|\sum_{i=1}^m b_i y_i\right\|_2$ $= (\sum_{i=1}^m b_i^2)^{1/2} \operatorname{car}(y_i)$ b.o.n. $\le 2\left(\sum_{i=1}^m a_i^2\right)$.

Quatrième partie

IV.1. On peut prendre
$$n_0 = 0$$
 car $\sum_{n \ge 0} c_n^2 = \frac{c^2}{4} \le c^2$.

La suite $u_p = \sum_{n \geq p} c_n^2$ est décroissante de limite nulle.

On prend $n_1 = 1$ (qui convient bien ici) puis, par récurrence sur k, si on a choisi n_k on prend pour n_{k+1} le plus petit entier $\geq n_k + 1$ tel que $u_{n_{k+1}} \leq c^2 4^{-(k+1)}$.

IV.2. Soit F_k un sous-espace vectoriel de E de dimension $2(n_{k+1} - n_k) - 1$ (ceci est possible car E est de dimension infinie), on a vu au III que l'on pouvait définir une suite v_{n_k+i} de vecteurs de norme 1 telle que, pour tous réels $a_{n_k+1}, \ldots, a_{n_{k+1}}$ on ait

$$\left\| \sum_{i=n_k+1}^{n_{k+1}} a_i v_i \right\| \le 2 \left(\sum_{i=n_k+1}^{n_{k+1}} a_i^2 \right)^{1/2}$$

ce qui est le résultat attendu.

IV.3. Posons $x_n = c_n v_n$ et montrons que, quelque soit le choix des ε_n , la série $\sum \varepsilon_n x_n$ converge. On utilise le critère de Cauchy, majorons $\left\|\sum_{n=m}^{m+p} \varepsilon_n x_n\right\|$. On note n_k le plus grand entier tel que $n_k + 1 \le m$ et n_k le plus petit entier tel que $m + p \le n_k$ alors, en prenant la propriété du III.2 avec $a_n = \varepsilon_n c_n$ si $m \le n \le m + p$ et $a_n = 0$ si $n_k + 1 \le n < m$ on a

$$\left\| \sum_{n=m}^{n_{k+1}} \varepsilon_n x_n \right\| \le 2 \left(\sum_{n=m}^{n_{k+1}} c_n^2 \right)^{1/2} \le 2c2^{-k},$$

de même avec $a_n = 0$ si $m + p < n \le n_h$ on a

$$\left\| \sum_{n=n_{h-1}+1}^{m+p} \varepsilon_n x_n \right\| \le 2 \left(\sum_{n=n_{h-1}+1}^{m+p} c_n^2 \right)^{1/2} \le 2c 2^{-(h-1)}.$$

D'où, en utilisant l'inégalité triangulaire

$$\left\| \sum_{n=m}^{m+p} \varepsilon_n x_n \right\| \le 2c(2^{-k} + 2^{-k-1} + \dots + 2^{-(h-1)})$$

$$< 4c2^{-k}.$$

la série vérifie bien le critère de Cauchy, elle converge.

IV.4. Il suffit maintenant de choisir $c_n = \frac{1}{n+1}$.

Remarque : ceci généralise le résultat du I.4.

CINQUIÈME PARTIE

- **V.1.** $\Lambda(T)$ est un sous-ensemble non vide minoré de \mathbb{R} , il possède une borne inférieure $\pi(T)$.
 - Montrons que $\pi(T) \in \Lambda(T)$. Soit h > 0 alors $\pi(T) + h \in \Lambda(T)$ (en effet, $\Lambda(T)$ est un intervalle de \mathbb{R} car si $C \in \Lambda(T)$ alors $\forall C' \geq C, C' \in \Lambda(T)$). On a ainsi

$$\forall (x_1, \dots, x_p) \in X^p, \ \sum_{j=1}^p ||T(x_j)||' \le (\pi(T) + h) \sup \left\{ \left\| \sum_{j=1}^p \varepsilon_j x_j \right\| \ ; \ \varepsilon_j = \pm 1 \right\}$$

et on sait que l'on peut permuter les quantificateurs \forall donc $\forall (x_1, \ldots, x_p) \in X^p$,

$$\forall h > 0, \ \sum_{j=1}^{p} \|T(x_j)\|' \le (\pi(T) + h) \sup \left\{ \left\| \sum_{j=1}^{p} \varepsilon_j x_j \right\| \ ; \ \varepsilon_j = \pm 1 \right\}$$

et quand $h \to 0$, on obtient

$$\forall (x_1, \dots, x_p) \in X^p, \ \sum_{j=1}^p ||T(x_j)||' \le \pi(T) \sup \left\{ \left\| \sum_{j=1}^p \varepsilon_j x_j \right\| \ ; \ \varepsilon_j = \pm 1 \right\}$$

soit $\pi(T) \in \Lambda(T)$ c.q.f.d.

- **V.2.** On prend p = 1 alors $||T(x_1)||' \le \pi(T) \sup\{\underbrace{\|\varepsilon_1 x_1\|}_{=\|x_1\|}; \ \varepsilon_1 = \pm 1\}$. Soit T est continue et en outre $|||T||| \le \pi(T)$ (et en général, on n'a pas égalité, cf. V.5).
- **V.3.** On note AS(X,Y) l'ensemble des applications absolument sommantes de X dans Y.
 - $\mathcal{A}S(X,Y) \neq \emptyset$ car l'application nulle est absolument sommante et si $\pi(T) = 0$ alors T = 0 or, vu l'inégalité de la question 2, $\pi(T) = 0 \Rightarrow |||T||| = 0 \Rightarrow T = 0$.
 - Si $T \in \mathcal{A}S(X,Y)$ alors $\lambda T \in \mathcal{A}S(X,Y)$ et on a $\pi(\lambda T) = |\lambda|\pi(T)$ (évident).
 - Montrons l'inégalité triangulaire (et la stabilité pour +) :

$$\sum_{j=1}^{p} \|(T+U)(x_j)\| \le \sum_{j=1}^{p} \|T(x_j)\| + \sum_{j=1}^{p} \|U(x_j)\|$$

$$\le \pi(T) \sup \left\{ \left\| \sum_{j=1}^{p} \varepsilon_j x_j \right\| ; \ \varepsilon_j = \pm 1 \right\} + \pi(U) \sup \left\{ \left\| \sum_{j=1}^{p} \varepsilon_j x_j \right\| ; \ \varepsilon_j = \pm 1 \right\}$$

$$\le [\pi(T) + \pi(U)] \sup \left\{ \left\| \sum_{j=1}^{p} \varepsilon_j x_j \right\| ; \ \varepsilon_j = \pm 1 \right\}$$

donc $T + U \in \mathcal{A}S(X, Y)$ et $\pi(T + U) \leq \pi(T) + \pi(U)$.

V.4. $\sum_{j=1}^{p} |f_i|$ est continue sur [0,1] donc $\exists x_0 \in [0,1]$ tel que $\sum_{i=1}^{p} |f_i(x_0)| = \left\|\sum_{i=1}^{p} |f_i|\right\|_{\infty}$. On pose $|f_j(x_0)| = \varepsilon'_j f_j(x_0)$ où $\varepsilon'_j = \pm 1$ selon le signe de $f_j(x_0)$. On a ainsi

$$\sum_{j=1}^{p} |f_j(x_0)| = \sum_{j=1}^{p} \varepsilon_j' f_j(x_0)$$

$$\leq \left\| \sum_{j=1}^{p} \varepsilon_j' f_j \right\|_{\infty}$$

$$\leq \sup \left\{ \left\| \sum_{j=1}^{p} \varepsilon_j f_j \right\|_{\infty} ; \ \varepsilon_j = \pm 1 \right\}.$$

Comme $\int_0^1 \sum_{j=1}^p |f_j(x)| dx \le \sum_{j=1}^p |f_j(x_0)|$ alors

$$\sum_{j=1}^{p} ||J(f_j)||_1 = \int_0^1 \sum_{j=1}^{p} |f_j(x)| \, \mathrm{d}x \leqslant \sum_{j=1}^{p} |f_j(x_0)| \, \mathrm{d}x \leqslant$$

donc J est absolument sommante et $\pi(J) \leq 1$. Enfin en prenant f = 1 qui appartient à X on obtient

$$1 = ||f||_1 \le \pi(J)||f||_{\infty} = \pi(J).$$

Conclusion : $\pi(J) = 1$.

V.5. C'est une conséquence immédiate de la partie I.

En effet, la série $\sum x^{(n)}$ est inconditionnellement convergente mais n'est pas absolument convergente. On a $X_p = \sum_{j=1}^p \varepsilon_j x^{(j)} = (\varepsilon_0, \dots, \frac{\varepsilon_p}{p+1}, 0, \dots)$ donc $||X_p|| = 1$. Or s'il existe $\pi(I)$ alors les sommes partielles $\sum_{j=1}^p ||\underbrace{I(x^{(j)})}_{=x^{(j)}}||$ sont majorées et cela entraı̂ne que la série $\sum x^{(j)}$ est absolument convergente ce qui est faux.

V.6. a. Soit $M_p = \left\| \sum_{j=0}^p \varepsilon_j x_j \right\|$ (la borne supérieure est atteinte car on opère sur un ensemble fini) on utilise alors l'inégalité suivante :

$$2\left\|\sum_{j=0}^{p} \varepsilon_{j} x_{j}\right\| = \left\|2\sum_{j=0}^{p} \varepsilon_{j} x_{j}\right\|$$

$$= \left\|\sum_{j=0}^{p} \varepsilon_{j} x_{j} + x_{p+1} + \sum_{j=0}^{p} \varepsilon_{j} x_{j} - x_{p+1}\right\|$$

$$\leq \left\|\sum_{j=0}^{p} \varepsilon_{j} x_{j} + x_{p+1}\right\| + \left\|\sum_{j=0}^{p} \varepsilon_{j} x_{j} - x_{p+1}\right\| \leq 2M_{p+1}$$

ce qui donne effectivement $M_p \leq M_{p+1}$.

- **b.** On raisonne par l'absurde en supposant que $\lim_{p \to +\infty} M_p = +\infty$. Montrons par récurrence sur n qu'il existe une suite (p_n) d'entiers strictement croissante et une famille $(\varepsilon_j) \in \{-1, +1\}^{\mathbb{N}}$ telle que $\left\|\sum_{j=0}^{p_n} \varepsilon_j x_j\right\| \geq n$.
 - n = 0: immédiat.
 - On suppose la propriété vraie à l'ordre n. Choisissons $p_{n+1} > p_n$ tel que $M_{p_{n+1}} \ge 1 + n + 2M_{p_n}$. On écrit que $M_{p_{n+1}} = \left\|\sum_{j=0}^{p_{n+1}} \varepsilon_j' x_j\right\|$ et on pose $\varepsilon_j = \varepsilon_j'$ pour $j \in [p_n + 1, p_{n+1}]$. On a alors

$$\left\| \sum_{j=0}^{p_{n+1}} \varepsilon_j x_j \right\| = \left\| \sum_{j=0}^{p_{n+1}} \varepsilon_j' x_j - \sum_{j=0}^{p_n} \varepsilon_j' x_j + \sum_{j=0}^{p_n} \varepsilon_j x_j \right\|$$

$$\geq \left\| \sum_{j=0}^{p_{n+1}} \varepsilon_j' x_j \right\| - 2M_{p_n}$$

$$\geq M_{p_{n+1}} - 2M_{p_n} \geq n + 1.$$

Conclusion : la série $\sum x_n$ n'est pas inconditionnellement convergente ce qui est contraire à l'hypothèse donc la suite M_p est croissante et majorée donc convergente.

c. Si T est absolument sommante et $\sum x_n$ inconditionnellement convergente alors, en notant $M = \sup_{p \in \mathbb{N}} M_p$ qui existe d'après la question précédente, on a

$$\sum_{j=0}^{p} ||T(x_j)||' \le \pi(T)M$$

donc la série $\sum ||T(x_j)||'$ est convergente.

- **V.7.** On a vu au IV.4 que dans un espace de Banach de dimension infinie, il existe une suite (x_n) de vecteurs inconditionnellement convergente mais non absolument convergente.
 - ullet On vient de voir à la question précédente que, si I est absolument sommante alors toute suite inconditionnellement convergente est absolument convergente.

On a donc l'implication suivante : si l'identité d'un espace de Banach est absolument sommante alors cet espace est de dimension finie.

Montrons la réciproque : supposons que dim E = n, on munit E d'une base et on choisit la norme 1 associée, on va montrer que $\sum_{j=1}^{p} \|x_j\|_1 \leq n \sup\{\left\|\sum_{j=1}^{p} \varepsilon_j x_j\right\|_1\}$.

En effet,
$$\sum_{j=1}^{p} ||x_j||_1 = \sum_{j=1}^{p} \left(\sum_{i=1}^{n} |x_{ij}| \right) = \sum_{i=1}^{n} \left(\sum_{j=1}^{p} |x_{ij}| \right).$$

Soit i_0 tel que $\sum_{j=1}^p |x_{i_0j}| = \max_i \left(\sum_{j=1}^p |x_{ij}|\right)$ et prenons $\varepsilon = \operatorname{sgn}(x_{i_0j})$ alors, vu que l'on a

évidemment
$$n \sum_{j=1}^{p} |x_{i_0j}| \geqslant \sum_{i=1}^{n} \left(\sum_{j=1}^{p} |x_{ij}|\right) = \sum_{j=1}^{p} ||x_j||_1$$
, on en déduit que
$$\left\|\sum_{j=1}^{p} \varepsilon_j x_j\right\|_1 = \sum_{i=1}^{n} \left|\sum_{j=1}^{p} \varepsilon_j x_{ij}\right|$$
$$\geqslant \sum_{j=1}^{p} |x_{i_0j}|$$
$$\geqslant \frac{1}{n} \sum_{j=1}^{p} ||x_j||_1$$

Conclusion: I est absolument sommante.

Finalement on a l'équivalence : l'identité d'un espace de Banach est absolument sommante ssi cet espace est de dimension finie.

SIXIÈME PARTIE

- **VI.1.** Soit $u_1 = u_0 \circ w$.
 - u_1 inversible : évident.
 - $|||u_0 \circ w||| = \sup_{\|x\|_2 = 1} \|u_0 \circ w(x)\| = \sup_{\|y\|_2 = 1} \|u_0(y)\| = |||u_0|||$ car w est bijectif et conserve la norme.
 - $\operatorname{Tr}(u_1^{-1} \circ v) = \operatorname{Tr}(w^{-1} \circ u_0^{-1} \circ v) = \operatorname{Tr}(u_0^{-1} \circ v \circ w^{-1}) \le n |||v \circ w^{-1}||| = n |||v||| \text{ car } w^{-1} \text{ est aussi un automorphisme orthogonal.}$
- VI.2. a. Classique : $f^* \circ f$ est diagonalisable (endomorphisme autoadjoint) et il existe une base orthonormée dans laquelle $M(f^* \circ f) = \text{Diag}(\lambda_i)$ avec $\lambda_i > 0$. On prend pour s l'endomorphisme de matrice $\text{Diag}(\sqrt{\lambda_i})$ dans cette base. s est bien symétrique défini positif (donc inversible).
 - **b.** Soit $u = f \circ s^{-1}$ alors $u^* = s^{-1} \circ f^*$ et $u^* \circ u = s^{-1} \circ f^* \circ f \circ s^{-1} = \text{Id donc } u$ est orthogonal et $f = u \circ s$.
- **VI.3.** On applique la question précédente à $f = u_0^{-1} \circ u_1$.
- **VI.4.** On a $s=u^{-1}\circ u_0^{-1}\circ u_1$ et s symétrique >0 d'où

$$0 < \det s = |\det s| = \underbrace{|\det u^{-1}|}_{=1} \cdot \frac{|\det u_1|}{|\det u_0|}$$

car le déterminant d'un automorphisme orthogonal vaut ± 1 . Or, par définition, $|\det u_0| \ge |\det u_1|$ donc $\det s \le 1$.

 $|\det u_1|$ donc $\det s \le 1$. Enfin, comme $s^{-1} = u_1^{-1} \circ (u_0 \circ u)$ on écrit

$$\operatorname{Tr}(s^{-1}) \le n|||u_0 \circ u||| \underbrace{=}_{\operatorname{cf V.1}} n|||u_0||| = n.$$

- **VI.5.** Classique : on prend le logarithme et on utilise sa stricte concavité. Il y a égalité pour $t_1 = \ldots = t_n$.
- **VI.6.** Si $\lambda_1, \ldots, \lambda_n$ désignent les valeurs propres de s $(\lambda_i > 0)$ alors det $s = \lambda_1 \ldots \lambda_n \le 1$ et $\operatorname{Tr}(s^{-1}) = \frac{1}{\lambda_1} + \cdots + \frac{1}{\lambda_n} \le n$.

Si on applique l'inégalité de 5 à $t_i = \frac{1}{\lambda_i}$ on obtient

$$1 \le \left(\prod_{k=1}^n \frac{1}{\lambda_k}\right)^{1/n} \le \frac{1}{n} \sum_{k=1}^n \lambda_k \le 1.$$

On a ainsi égalité dans l'inégalité du 5 ce qui signifie que $\lambda_1=\ldots=\lambda_n=1$. Conclusion : s=I (s est diagonalisable et admet une seule valeur propre 1) et $u_1=u_0\circ u$ donc il y a "unicité" de u_0 à un automorphisme orthogonal près.