ÉCOLE POLYTECHNIQUE

CONCOURS D'ADMISSION 1999

PREMIÈRE COMPOSITION DE MATHÉMATIQUES

(Durée: 4 heures)

L'utilisation des calculatrices n'est pas autorisée pour cette épreuve.

* * *

On attachera la plus grande importance à la clarté, à la précision et à la concision de la rédaction.

* * *

Notations

Pour toute fonction f de deux variables réelles x et y, on posera $\partial_1 f = \frac{\partial f}{\partial x}$ et $\partial_2 f = \frac{\partial f}{\partial y}$. Par ailleurs on pose

$$\Pi_{+} = \{(x,y) \in \mathbb{R}^{2} | y > 0\}$$
$$\bar{\Pi}_{+} = \{(x,y) \in \mathbb{R}^{2} | y \geqslant 0\}$$

Enfin on désigne par K la fonction sur Π_+ définie par

$$K(x,y) = \frac{1}{\pi} \frac{y}{x^2 + y^2}$$

Première partie

- 1. Calculer $\int_{-\infty}^{+\infty} K(x,y) dx$.
- **2.** Calculer $\partial_1 K$, $\partial_2 K$, $\partial_1^2 K + \partial_2^2 K$.
- **3.** Montrer que, si m et n sont deux entiers ≥ 0 , $(\partial_1^m \partial_2^n K)(x,y)$ peut s'écrire sous la forme $\frac{P_{m,n}(x,y)}{(x^2+y^2)^{m+n+1}}$ où $P_{m,n}$ est un polynôme dont le degré par rapport à x est majoré par 2(m+n).

Deuxième partie

Dans cette partie, la lettre f désigne une fonction complexe continue bornée sur \mathbb{R} .

4. Montrer que, pour tout (x,y) dans Π_+ , la fonction $t \mapsto f(t)K(x-t,y)$ est intégrable sur \mathbb{R} .

On notera $\Phi_f(x,y)$ son intégrale.

- **5.a)** Montrer que la fonction Φ_f ainsi définie sur Π_+ est continue et bornée.
- **b)** On désigne par E (resp. F) l'espace des fonctions complexes continues bornées sur \mathbb{R} (resp. sur Π_+) et on le munit de la norme $\varphi \mapsto \|\varphi\| = \sup_{x \in \mathbb{R}} |\varphi(x)|$ (resp. $\sup_{(x,y) \in \Pi_+} |\varphi(x,y)|$).

Vérifier que l'application linéaire $f \mapsto \Phi_f$ de E dans F est continue et préciser sa norme.

- **6.** Montrer que Φ_f est de classe \mathcal{C}^{∞} . Calculer $\partial_1^2 \Phi_f + \partial_2^2 \Phi_f$.
- 7. Montrer que, pour tout réel a>0, Φ_f est uniformément continue sur le demi-plan $\{(x,y)\in\mathbb{R}^2\mid y\geqslant a\}.$
 - **8.** Soit x_0 un réel, ε un réel > 0. Trouver un réel $\eta > 0$ tel que

$$\forall (x,y) \in \Pi_+, \qquad |x - x_0| < \eta, \quad y < \eta \Rightarrow |\Phi_f(x,y) - f(x_0)| < \varepsilon.$$

On notera $\overline{\Phi_f}$ la fonction continue sur $\overline{\Pi}_+$ égale à Φ_f sur Π_+ et telle que $\forall x \in \mathbb{R}$, $\overline{\Phi_f}(x,0) = f(x)$.

- 9. On suppose f uniformément continue.
- a) Soit ε un réel > 0. Trouver un réel $\eta > 0$ tel que

$$\forall (x,y) \in \Pi_+, \forall x_0 \in \mathbb{R}, |x-x_0| < \eta, y \leqslant \eta \Longrightarrow |\Phi_f(x,y) - f(x_0)| \leqslant \varepsilon.$$

b) Montrer que la fonction $\overline{\Phi_f}$ est uniformément continue.

Troisième partie

- **10.** On prend ici pour f la fonction $x \mapsto e^{i\alpha x}$ où α est un réel > 0 fixé.
- a) Montrer qu'il existe une fonction g telle que l'on ait $\Phi_f(x,y) = f(x)g(y)$.
- b) Écrire une équation différentielle linéaire du second ordre satisfaite par g et en déduire explicitement Φ_f .

2

11. On fixe un réel a>0. Expliciter la fonction ψ sur $\mathbb R$ définie par

$$\psi(p) = \int_{-\infty}^{+\infty} \frac{e^{ipx}}{x^2 + a^2} \mathrm{d}x,$$

puis la fonction $y \mapsto \int_{-\infty}^{+\infty} e^{-ipy} \psi(p) dp$.

- 12. On note ici f une fonction continue périodique de période 2π et y_0 un réel > 0. On pose $h(x) = \Phi_f(x, y_0)$.
- a) Vérifier que h est périodique de période 2π .
- b) Exprimer les coefficients de Fourier de h en fonction de ceux de f. [On montrera d'abord que l'on a

$$\widehat{h}(n) = \lim_{A \to +\infty} \frac{1}{2\pi} \int_0^{2\pi} e^{-inx} \left(\int_{-A}^A f(x-t) K(t, y_0) dt \right) dx.$$

Quatrième partie

On suppose ici que la fonction continue f tend vers 0 lorsque x tend vers $\pm \infty$.

- 13. Montrer que la fonction $\overline{\Phi}_f$ est uniformément continue.
- **14.** Soit ε un réel > 0; déterminer des réels a et u tels que l'on ait $|\overline{\Phi}_f(x,y)| \le \varepsilon$ pour tout point (x,y) de $\overline{\Pi}_+$ satisfaisant $y \ge a$ ou $|x| \ge u$.
 - 15. Déterminer la limite de $\overline{\Phi}_f(x,y)$ lorsque |x|+y tend vers l'infini.
- 16. On désigne par E_0 le sous-espace vectoriel de E formé des fonctions qui tendent vers 0 lorsque la variable tend vers $\pm \infty$.

Déterminer la norme de l'application $f \mapsto \Phi_f$ de E_0 dans F.

* *