SPÉCIALE MP* : DEVOIR LIBRE

- (1) Dans tout le problème, I désigne l'intervalle [0,1] de \mathbb{R} et $I^2 = I \times I$.
- (2) C(I) est l'espace vectoriel des fonctions réelles continues sur I. On le munit de la norme de la convergence uniforme :

$$\forall f \in \mathcal{C}(I), \ \|f\| = \sup_{x \in I} |f(x)|.$$

M(I) est l'espace vectoriel des formes linéaires continues sur $\mathcal{C}(I)$. On le munit de la norme naturellement associée à celle de $\mathcal{C}(I)$:

$$\forall \mu \in M(I), \ \|\mu\| = \sup_{f \in B_1} |\mu(f)|$$

où B_1 est la boule unité fermée de $\mathcal{C}(I)$.

(3) $C(I^2)$ est l'espace vectoriel des fonctions réelles continues sur I^2 , muni de la norme de la convergence uniforme :

$$\forall F \in \mathcal{C}(I^2), \ \|F\| = \sup_{(x,y) \in I^2} |F(x,y)|.$$

 $M(I^2)$ est l'espace vectoriel des formes linéaires continues sur $\mathcal{C}(I^2)$ muni de la norme associée :

$$\forall \lambda \in M(I^2), \ \|\lambda\| = \sup_{F \in B_2} |\lambda(F)|$$

où B_2 est la boule unité fermée de $\mathcal{C}(I^2)$.

(4) Soit $F \in \mathcal{C}(I^2)$, $x \in I$. On note F(x, .) l'application partielle

$$y \in I \mapsto F(x, y),$$

F(x, .) appartient donc à C(I).

(5) Soit $f \in \mathcal{C}(I)$, $g \in \mathcal{C}(I)$. On désigne par $f \otimes g$ l'élément de $\mathcal{C}(I^2)$ défini par la formule :

$$\forall (x,y) \in I^2, \ (f \otimes g)(x,y) = f(x)g(y).$$

(6) On dit qu'une fonction h est de classe \mathcal{C}^1 sur l'intervalle J si h est continue et possède un dérivée continue sur J.

Première partie

Pour tout $f \in \mathcal{C}(I)$, on pose $m(f) = \int_0^1 f(x) dx$.

- **I.1.** Montrer que l'application ainsi définie de $\mathcal{C}(I)$ dans \mathbb{R} appartient à M(I) et calculer ||m||.
- **I.2.** Soit $a \in I$. Pour tout $f \in \mathcal{C}(I)$, on pose $\delta_a(f) = f(a)$. Montrer que δ_a appartient à M(I). Calculer $\|\delta_a\|$. Calculer $\|\delta_a - \delta_b\|$ si a et b sont deux éléments distincts de I.
- **I.3.** Calculer $||m \delta_a||$.
- **I.4.** Montrer que pour tout $f \in \mathcal{C}(I)$, $\lim_{n \to +\infty} \delta_{\frac{1}{n}}(f) = \delta_0(f)$.

La suite $(\delta_{\frac{1}{n}})_{n\in\mathbb{N}^*}$ a-t-elle une limite dans M(I)?

A-t-on une propriété analogue dans $M(I^2)$?

I.5. Soit $\lambda \in M(I^2)$, $\theta \in \mathcal{C}(I)$. On définit deux applications $p_{\theta}(\lambda)$ et $q_{\theta}(\lambda)$ de $\mathcal{C}(I)$ dans \mathbb{R} par les formules :

$$\forall f \in \mathcal{C}(I), \, p_{\theta}(\lambda)(f) = \lambda(f \otimes \theta)$$
$$\forall f \in \mathcal{C}(I), \, q_{\theta}(\lambda)(f) = \lambda(\theta \otimes f).$$

Montrer que $p_{\theta}(\lambda)$ et $q_{\theta}(\lambda)$ appartiennent à M(I).

Les applications p_{θ} et q_{θ} ainsi définies de $M(I^2)$ dans M(I) sont-elles continues ?

Deuxième partie

II.1. Soit $F \in \mathcal{C}(I^2)$, $\nu \in M(I)$. Montrer que l'application F_{ν} de I dans \mathbb{R} définie par

$$\forall x \in I, \ F_{\nu}(x) = \nu[F(x,.)]$$

appartient à C(I).

Établir l'inégalité $||F_{\nu}|| \leq ||F|| \cdot ||\nu||$.

II.2. Soit $\mu \in M(I)$, $\nu \in M(I)$. On définit une application de $\mathcal{C}(I^2)$ dans \mathbb{R} , notée $\mu \otimes \nu$, par la formule

$$\forall F \in \mathcal{C}(I^2), \ \mu \otimes \nu(F) = \mu(F_{\nu}).$$

- **a.** Montrer que $\mu \otimes \nu$ appartient à $M(I^2)$.
- **b.** Calculer $\|\mu \otimes \nu\|$ en fonction de $\|\mu\|$ et $\|\nu\|$.
- **c.** Que peut-on dire de l'application $(\mu, \nu) \mapsto \mu \otimes \nu$?

Dans la suite, \mathcal{E} désigne l'image de $M(I) \times M(I)$ par cette application.

II.3. a. Soit $\lambda \in \mathcal{E}$, $\lambda \neq 0$. Montrer qu'il existe $\alpha \in \mathcal{C}(I)$ et $\beta \in \mathcal{C}(I)$ tels que

$$\lambda(\alpha \otimes \beta) = 1.$$

Montrer que pour tout couple (α, β) de $\mathcal{C}(I) \times \mathcal{C}(I)$ vérifiant cette condition,

$$\lambda = p_{\beta}(\lambda) \otimes q_{\alpha}(\lambda).$$

b. Soit $\lambda = \delta_0 \otimes \delta_0 + \delta_1 \otimes \delta_1$.

On considère $\theta \in \mathcal{C}(I)$ défini par $\forall x \in I, \theta(x) = x$.

Calculer $p_{\theta}(\lambda)$ et $q_{\theta}(\lambda)$.

c. \mathcal{E} est-il un sous-espace vectoriel de $M(I^2)$?

Troisième partie

Dans cette partie, φ désigne une fonction de classe \mathcal{C}^1 sur \mathbb{R} , périodique de période 1, prenant ses valeurs dans I.

III.1. On pose

$$a_n = \int_0^1 \sqrt{1 + [n\varphi'(nx)]^2} \, \mathrm{d}x.$$

Quelle interprétation géométrique peut-on donner du nombre a_n ?

Montrer que la suite $(\frac{a_n}{n})_{n\in\mathbb{N}^*}$ a une limite l.

Exprimer l à l'aide d'une intégrale.

III.2. Pour tout $g \in \mathcal{C}(I)$, on pose

$$\nu(g) = \int_0^1 g[\varphi(x)] |\varphi'(x)| \, \mathrm{d}x$$

et pour tout entier $n \ge 1$

$$\nu_n(g) = \frac{1}{n} \int_0^1 g[\varphi(nx)] \sqrt{1 + [n\varphi'(nx)]^2} \, \mathrm{d}x.$$

Montrer que ν et ν_n appartiennent à M(I).

Montrer que la suite $(\nu_n)_{n\in\mathbb{N}^*}$ admet ν pour limite dans l'espace vectoriel normé M(I).

III.3. Soit $F \in \mathcal{C}(I^2)$. Montrer que pour tout $\varepsilon > 0$, il existe un entier N tel que les conditions n > N et $0 \le k < n$, $(n,k) \in \mathbb{N}^2$, impliquent $|\Delta_{n,k}| < \varepsilon$ où $\Delta_{n,k}$ désigne la différence $\int_{\frac{k}{n}}^{\frac{k+1}{n}} F[x,\varphi(nx)] \sqrt{1 + [n\varphi'(nx)]^2} \, \mathrm{d}x - \nu \left[F\left(\frac{k}{n},.\right) \right].$ (On pourra poser $\omega_{n,k}(F) = \int_{-\infty}^{(k+1)/n} F(x,\varphi(nx)) \sqrt{1 + n^2\varphi'(nx)^2} \, \mathrm{d}x.$)

III.4. Pour tout $F \in \mathcal{C}(I^2)$ et tout entier $n \ge 1$, on pose :

$$\lambda_n(F) = \frac{1}{n} \int_0^1 F[x, \varphi(nx)] \sqrt{1 + [n\varphi'(nx)]^2} \, \mathrm{d}x.$$

Montrer que λ_n appartient à $M(I^2)$.

Montrer qu'il existe $\lambda \in M(I^2)$ tel que, pour tout $F \in \mathcal{C}(I^2)$,

$$\lim_{n \to +\infty} \lambda_n(F) = \lambda(F).$$

Montrer que λ appartient à l'ensemble $\mathcal E$ défini dans II.

Quatrième partie

Dans cette partie, φ désigne une fonction de classe \mathcal{C}^1 sur I, prenant ses valeurs dans I. On se propose d'étudier $\nu \in M(I)$ défini par la formule :

$$\forall f \in \mathcal{C}(I), \ \nu(f) = \int_0^1 f[\varphi(x)] |\varphi'(x)| \, \mathrm{d}x.$$

IV.1. Montrer que si φ est monotone, il existe deux réels a_1 , a_2 tels que

$$0 \leqslant a_1 \leqslant a_2 \leqslant 1 \text{ et } \forall f \in \mathcal{C}(I), \ \nu(f) = \int_{a_1}^{a_2} f(x) \, \mathrm{d}x.$$

IV.2. On suppose dans cette question que l'équation $\varphi'(x) = 0$ n'a qu'un nombre fini de racines dans I. Montrer qu'il existe une fonction en escalier ψ définie sur I et prenant ses valeurs dans \mathbb{N} , telle que

$$\forall f \in \mathcal{C}(I), \ \nu(f) = \int_0^1 f(x)\psi(x) \, \mathrm{d}x.$$

IV.3. Soit φ_0 la fonction définie sur \mathbb{R} par :

$$\begin{cases} \varphi_0(x) = \sin^2(2\pi x) & \text{pour } \frac{1}{2} < x < 1, \\ \varphi_0(x) = 0 & \text{pour } x \leqslant \frac{1}{2} \text{ ou } x \geqslant 1. \end{cases}$$

Soit (α_k) une suite décroissante de réels telle que

$$\forall k \in \mathbb{N}, \ \alpha_k \in]0,1] \text{ et } \lim_{k \to +\infty} \alpha_k = 0.$$

Pour tout $n \ge 1$, on pose :

$$\varphi_n(x) = \sum_{k=0}^n \frac{\alpha_k}{2^k} \varphi_0(2^k x).$$

- **a.** Tracer le graphe de φ_2 dans le cas $\alpha_0=\alpha_1=\alpha_2=1.$
- **b.** Montrer que pour tout $n \in \mathbb{N}$, φ_n est une fonction de classe \mathcal{C}^1 prenant ses valeurs dans I et qu'il existe une fonction en escalier ψ_n définie sur I et prenant ses valeurs dans \mathbb{N} telle que

$$\forall f \in \mathcal{C}(I), \ \int_0^1 f[\varphi_n(x)] |\varphi'_n(x)| \, \mathrm{d}x = \int_0^1 f(x) \psi_n(x) \, \mathrm{d}x.$$

Expliciter ψ_2 associée à la fonction φ_2 du a.

Exprimer $\gamma_n = \int_0^1 \psi_n(x) dx$ en fonction des α_k .

- c. Montrer que la suite (φ_n) converge uniformément sur I, que sa limite est de classe \mathcal{C}^1 et prend ses valeurs dans I. Étudier la convergence de la suite (γ_n) .
- **d.** Si φ est la limite de la suite (φ_n) , montrer qu'il existe une fonction ψ définie sur I et prenant ses valeurs dans \mathbb{N} , intégrable sur tout intervalle $[\varepsilon,1]$ où $\varepsilon \in]0,1[$ et telle que :

(i)
$$\lim_{\varepsilon \to 0} \int_{\varepsilon}^{1} \psi(x) \, \mathrm{d}x$$
 existe,

(ii)
$$\forall f \in \mathbb{C}(I), \ \nu(f) = \lim_{\varepsilon \to 0} \int_{\varepsilon}^{1} \psi(x) f(x) \, \mathrm{d}x$$

(noté plus simplement $\nu(f) = \int_0^1 \psi(x) f(x) dx$).