SPÉCIALE MP* : CORRIGÉ DU DEVOIR SUR LES FRACTIONS CONTINUES

Partie I

(1) On a $a = a_0b + r_1$ par division euclidienne, soit $\frac{a}{b} = a_0 + \frac{1}{\frac{b}{r_1}}$ avec $r_1 < b$ et où a_0 peut être nul ou < 0. On divise b par r et, comme dans l'algorithme d'Euclide, on met en évidence une suite (r_k) d'entiers ≥ 1 et strictement décroissante donc cette suite est finie, ce qui assure l'existence de l'écriture.

L'écriture ci-dessus est unique : par récurrence sur n.

On sait que
$$\frac{1}{a_1 + \frac{1}{a_{n-1} + \frac{1}{a_n}}} < 1$$

Pour n = 1, c'est immédiat. En effet, si $a_0 + \frac{1}{a_1} = a_0' + \frac{1}{a_1'}$ avec $a_1 > 1$ et $a_1' > 1$ alors $a_0 = [r] = a_0'$ et $a_1 = a_1'$ en découle.

Si $a_0 + \frac{1}{r_{n-1}} = a'_0 + \frac{1}{r'_{n-1}}$ avec $r_{n-1} > 1$ et $r'_{n-1} > 1$ alors, en prenant les parties entières, on a $a_0 = a'_0$ et $r_{n-1} = r'_{n-1}$ ce qui permet d'utiliser l'hypothèse de récurrence et de conclure.

Remarque: il se peut que r_{n-1} et r'_{n-1} n'ait pas un D.F.C. (développement en fraction continue) de même longueur, la récurrence se fera alors sur la plus grande longueur. L'algorithme utilisé ici est l'algorithme d'Euclide.

- (2) Supposons par récurrence descendante sur k que $\rho_k = \frac{\alpha_k}{\beta_k}$ où $\begin{pmatrix} a_k & 1 \\ 1 & 0 \end{pmatrix} \begin{pmatrix} \dots \end{pmatrix} \begin{pmatrix} a_n & 1 \\ 1 & 0 \end{pmatrix} = \begin{pmatrix} \alpha_k & \gamma_k \\ \beta_k & \delta_k \end{pmatrix}$ alors $\frac{\alpha_{k-1}}{\beta_{k-1}} = \frac{a_{k-1}\alpha_k + \beta_k}{\alpha_k} = a_{k-1} + \frac{1}{r_k} = \rho_{k-1}$, on aura bien $r = \frac{\alpha}{\beta}$.
- (3) a) On a $\begin{pmatrix} P_{k-1} & R_{k-1} \\ Q_{k-1} & S_{k-1} \end{pmatrix} \begin{pmatrix} a_k & 1 \\ b_k & 0 \end{pmatrix} = \begin{pmatrix} P_{k-1}a_k + R_{k-1}b_k & P_{k-1} \\ Q_{k-1}a_k + S_{k-1}b_k & Q_{k-1} \end{pmatrix}$. On en tire: $R_k = P_{k-1}$, $S_k = Q_{k-1}$ donc

$$\begin{cases} P_k = a_k P_{k-1} + b_k P_{k-2} \\ Q_k = a_k Q_{k-1} + b_k Q_{k-2} \end{cases}$$

b) On a $\frac{P_k}{Q_k} - \frac{P_{k-1}}{Q_{k-1}} = \frac{\begin{vmatrix} P_k & P_{k-1} \\ Q_k & Q_{k-1} \end{vmatrix}}{Q_k Q_{k-1}} = \frac{b_k}{Q_k Q_{k-1}} \begin{vmatrix} P_{k-2} & P_{k-1} \\ Q_{k-2} & Q_{k-1} \end{vmatrix}$ d'où le résultat par une récurrence immédiate.

Partie II

(1) On utilise les relations de récurrence trouvées au I.3.a : $Q_k = u_k Q_{k-1} + Q_{k-2}$ avec $Q_0 = 1$, $Q_1 = u_1$ donc $Q_k \in \mathbb{N}^*$ et on a vu (toujours au I.3.a) que $R_k = \begin{pmatrix} P_k(u) & P_{k-1}(u) \\ Q_k(u) & Q_{k-1}(u) \end{pmatrix}$.

(2) On a (cf I.3.a) $\begin{vmatrix} P_k(u) & P_{k-1}(u) \\ Q_k(u) & Q_{k-1}(u) \end{vmatrix} = \begin{vmatrix} P_{k-2}(u) & P_{k-1}(u) \\ Q_{k-2}(u) & Q_{k-1}(u) \end{vmatrix}$ donc par une récurrence immédiate $P_k(u)Q_{k-1}(u) - P_{k-1}(u)Q_k(u) = (-1)^{k-1}$. Comme $u_k \ge 1$ alors $Q_k \ge Q_{k-1} + Q_{k-2}$ et par une récurrence immédiate sur k, $Q_k(u) > 0$. Donc, pour $k \ge 2$ $Q_k > Q_{k-1}$.

Grâce au calcul du I.3.a, on a $r_{2k} - r_{2k+2} = \frac{Q_{2k} - Q_{2k+2}}{Q_{2k}Q_{2k+1}Q_{2k+2}}$ i.e. $r_{2k+2} > r_{2k}$ car $Q_{2k} - Q_{2k+2} < 0$, on prouve de même que $r_{2k-1} > r_{2k+1}$. $\lim_{k \to +\infty} (r_{2k} - r_{2k+1}) = 0$ car

 $Q_k \to +\infty$ (suite d'entiers strictement croissante) donc les suites sont adjacentes.

(3) a) Grâce au résultat du I.3.b, on sait que $|r_{k+p}(u) - r_k(u)| < \frac{1}{Q_k^2(u)}$ d'où, en prenant la limite quand $p \to +\infty$, on trouve $|r(u) - r_k(u)| \le |r_{k+p}(u) - r_k(u)| < \frac{1}{Q_k^2(u)}$. Supposons que $r = \frac{P}{Q}$ et choisissons k suffisamment grand pour que $Q_k \geqslant Q$ alors $\left|\frac{P}{Q} - \frac{P_k}{Q_k}\right| = \left|\frac{PQ_k - P_kQ}{QQ_k}\right| < \frac{1}{Q_k^2}$. Nécessairement $PQ_k - P_kQ = 0$ i.e. $\frac{P}{Q} = \frac{P_k}{Q_k}$, la fraction $\frac{P_k}{Q_k}$ étant irréductible $(P_kQ_{k-1} - P_{k-1}Q_k = (-1)^{k+1})$, on obtient $Q = Q_k$, la suite (Q_k) serait stationnaire, ce qui est impossible.

b) On a

La suite (r_n) est convergente.

$$\left| \frac{c}{d} - r_{k-1}(u) \right| < \left| \frac{c}{d} - r(u) \right| + |r(u) - r_{k-1}(u)| \le |r_k(u) - r(u)| + |r(u) - r_{k-1}(u)|$$

$$< |r_k(u) - r_{k-1}(u)| \operatorname{car} \operatorname{sgn}(r_k - r) = \operatorname{sgn}(r - r_{k-1})$$

$$< \frac{1}{Q_k Q_{k-1}}.$$

On multiplie par dQ_{k-1} ce qui donne $|cQ_{k-1}(u) - dP_{k-1}(u)| < \frac{d}{Q_k}$. Comme $|cQ_{k-1}(u) - dP_{k-1}(u)| \in \mathbb{N}^*$ (car $\left|\frac{c}{d} - r(u)\right| < |r_k(u) - r(u)| < |r_{k-1}(u) - r(u)|$) alors $d > Q_k$.

Conclusion : r_k est la meilleure approximation de r(u) par des fractions dont le dénominateur est inférieur ou égal à Q_k .

- (4) a) On remarque que, si $x \in \mathcal{I}$ alors f(x) > 1 et $f(x) \in \mathcal{I}$, donc, par une récurrence immédiate $f^k(x) > 1$ et $f^k(x) \in \mathcal{I}$. Une conséquence directe est que $u_n(x) \in \mathbb{N}^*$ pour $k \ge 1$. Conclusion : $u(x) \in \mathcal{F}$.
 - b) Comme $f^{k+1} = \frac{1}{f^k u_k}$ alors $f^{k+1} = \begin{pmatrix} 0 & 1 \\ 1 & -u_k \end{pmatrix} * f^k$ donc $f^k = \begin{pmatrix} u_k & 1 \\ 1 & 0 \end{pmatrix} * f^{k+1}$ et $x = f^0 = \begin{pmatrix} u_0 & 1 \\ 1 & 0 \end{pmatrix} * f^1$. Par une récurrence immédiate, on a $x = R_k(u) * f^{k+1}$ c.q.f.d.

Autre méthode

\begin{Bourrin}

On fait une preuve par récurrence :

pour k = 1, il s'agit de prouver que

$$x = \frac{P_1(u)f^2(x) + P_0(u)}{Q_1(u)f^2(x) + Q_0(u)} = \underbrace{\frac{(u_0(x)u_1(x) + 1)f^2(x) + u_0(x)}{u_1(x)f^2(x) + 1}}_{=u}$$

or, en notations abrégées,

$$y = \frac{(u_0 u_1 + 1) \frac{1}{f(x) - u_0} + u_0}{u_1 \frac{1}{f(x) - u_1} + 1} = \frac{u_0 u_1 + 1 + u_0 (f(x) - u_1)}{u_1 + f(x) - u_1}$$
$$= u_0 + \frac{1}{f(x)} = [x] + x - [x] = x.$$

 $P(k) \Rightarrow P(k+1)$: on utilise ici les relations $\begin{cases} P_{k+1}(u) &= u_{k+1}(x)P_k(u) + P_{k-1}(u) \\ Q_{k+1}(u) &= u_{k+1}(x)Q_k(u) + Q_{k-1}(u) \end{cases}$ soit, en notations abrégées

$$\begin{split} \frac{P_{k+1}f^{k+2} + P_k}{Q_{k+1}f^{k+2} + Q_k} &= \frac{(u_{k+1}P_k + P_{k-1})f^{k+2} + P_k}{(u_{k+1}Q_k + Q_{k-1})f^{k+2} + Q_k} \\ &= \frac{u_{k+1}P_k + P_{k-1} + P_k(f^{k+1} - u_{k+1})}{u_{k+1}Q_k + Q_{k-1} + Q_k(f^{k+1} - u_{k+1})} \text{ car } f^{k+2} = \frac{1}{f^{k+1} - u_{k+1}} \\ &= \frac{P_kf^{k+1} + P_{k-1}}{Q_kf^{k+1} + Q_{k-1}} = x \text{ d'après l'hypothèse de récurrence} \end{split}$$

\end{Bourrin}

On utilise ensuite le lemme suivant :

Si a, b, c, d, λ sont des réels positifs et si $\frac{a}{b} < \frac{c}{d}$ alors $\frac{a}{b} < \frac{a + \lambda c}{b + \lambda d} < \frac{c}{d}$ (immédiat en réduisant au même dénominateur). On applique alors ce lemme avec $a = P_{2k}$, $b = Q_{2k}$, $c = P_{2k+1}$, $d = Q_{2k+1}$, $\lambda = f^{2k+2}$.

On peut alors conclure que x = r(u) en passant à la limite.

Remarque : soit $SL_2(\mathbb{Z}) = \{ M \in \mathcal{M}_2(\mathbb{Z}) \mid |\det M| = 1 \}$ alors $SL_2(\mathbb{Z})$ opère sur \mathcal{I} par

$$(M,x) \in \mathrm{SL}_2(\mathbb{Z}) \times \mathcal{I} \mapsto M * x = \frac{ax+b}{cx+d} \in \mathcal{I}$$

avec
$$M = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$$
.

- c) On a
 - $u_0(x+a) = a + u_0(x)$, $u_k(x+a) = u_k(x)$ pour $k \ge 1$.
 - On a $u_n(f^k(x)) = u_{n+k}(x)$.
 - On a

$$-x = -u_0 - \frac{1}{u_1 + x_2} \text{ où } x_2 = \frac{1}{f^2(x)}$$

d'où
$$-x = -(u_0 + 1) + \frac{u_1 + x_2 - 1}{u_1 + x_2}$$
.

- Si $u_1 = 1$ alors $-x = -(u_0+1) + \frac{1}{1+\frac{1}{x_2}}$ d'où le développement en fraction continue de -x:

$$-x = [-(u_0 + 1); \frac{1}{1 + u_2}, \frac{1}{u_3}, \dots, \frac{1}{u_{n+1}}, \dots].$$

– Si $u_1 > 1$ alors $\frac{u_1 + x_2}{u_1 - 1 + x_2} = 1 + \frac{1}{u_1 - 1 + x_2}$ ce qui permet là aussi le développement en fraction continue de -x dans ce cas :

$$-x = \left[-(u_0+1); \frac{1}{1}, \frac{1}{u_1-1}, \frac{1}{u_2}, \dots, \frac{1}{u_{n-1}}, \dots \right].$$

• Si x > 1 alors $u_0(1/x) = 0$ et $u_k(1/x) = u_{k-1}(x)$ pour $k \ge 1$. Si 0 < x < 1 alors on calculera [1/x] et on utilise le résultat ci-dessus en échangeant les rôles de x et 1/x i.e. $u_k(1/x) = u_{k+1}(x)$. Si x < 0 on utilise le point précédent pour se ramener au cas où x > 0.

Partie III

(1) On a
$$r(u) = u_0 + \frac{1}{u_1 + \frac{1}{\dots u_{N-1} + \frac{1}{s(u)}}}$$
 avec $s(u) = u_N + \frac{1}{u_{N+1} + \frac{1}{\dots + \frac{1}{s(u)}}}$ donc

 $s(u) = \frac{P_{p-1}s(u) + P_{p-2}}{Q_{p-1}s(u) + Q_{p-2}}$ (cf II.4.b) soit une relation de la forme

(1)
$$\gamma s^2(u) + (\delta - \alpha)s(u) - \beta = 0$$

avec α , β , γ , δ entiers, $\gamma \neq 0$.

On utilise ensuite le lemme suivant : si t est une racine non rationnelle d'une équation algébrique à coefficients dans $\mathbb Z$ alors $at+b,\ (a\neq 0)$ et $\frac{c}{t}\ (c\neq 0)$ sont aussi racines d'une équation algébrique à coefficients dans $\mathbb Z$:

En effet si $\alpha t^2 + \beta t + \gamma = 0$ alors $\alpha (at+b-b)^2 + \beta a (at+b-b) + a^2 \gamma = 0$ et on développe. De même $\gamma (\frac{c}{t})^2 + \beta c (\frac{c}{t}) + \alpha c^2 = 0$. Et on a $\gamma \neq 0$, $\alpha \neq 0$.

On prouve ensuite que $r(u) = \frac{\alpha' s(u) + \beta'}{\gamma' s(u) + \delta'} = A + \frac{B}{Cs(u) + D}$ et on utilise le lemme.

Conclusion : r(u) vérifie une équation algébrique du second degré à coefficients entiers.

(2) On utilise donc la relation $x = \frac{P_k(u)f^{k+1}(x) + P_{k-1}(u)}{Q_k(u)f^{k+1}(x) + Q_{k-1}(u)}$ alors en reportant dans la relation $\alpha x^2 + \beta x + \gamma = 0$ et en multipliant par $(Q_k f^{k+1} + Q_{k-1})^2$ (en notations simplifiées), on obtient

$$\alpha_k (f^{k+1})^2 + \beta_k f^{k+1} + \gamma_k = 0$$

avec $\alpha_k = Q_k^2 T(r_k)$, $\gamma_k = Q_{k-1}^2 T(r_{k-1})$, $\beta_k = Q_k Q_{k-1} (2\alpha r_k r_{k-1} + \beta (r_k + r_{k-1}) + 2\gamma)$ où $r_k = \frac{P_k}{Q_k}$ et $T(X) = \alpha X^2 + \beta X + \gamma$.

(3) Comme $T(r_k) - T(x) = (r_k - x)(\alpha(r_k + x) + \beta)$ alors

$$|\alpha_k| \le Q_k^2 |r_k - x|(|\alpha|(2x+1) + |\beta|) \le (|\alpha|(2x+1) + |\beta|)$$

car on a vu au II.3.a que $|r_k - x| \leq \frac{1}{Q_k^2}$. On obtient la même inégalité avec $|\gamma_k|$. En développant et en simplifiant, on trouve

$$\beta_k^2 - 4\alpha_k \gamma_k = Q_k^2 Q_{k-1}^2 (r_k - r_{k-1})^2 (\beta^2 - 4\alpha \gamma) = (\beta^2 - 4\alpha \gamma)$$

car
$$r_k - r_{k-1} = (-1)^k \frac{1}{Q_k Q_{k-1}}$$
 (relation du I.3.a).

Remarque: en utilisant la relation $f^{k+1} = \frac{1}{f^k - u_k}$, on obtient aussi

$$\begin{cases} \gamma_{k+1} &= \alpha_k \\ \beta_{k+1} &= \beta_k + 2\alpha_k u_k \\ \alpha_{k+1} &= \gamma_k + \beta_k u_k + \alpha_k u_k^2 \end{cases}$$

d'où $\Delta_{k+1} = \Delta_k = \Delta$.

On a aussi $|\beta_k|^2 \leq |\Delta| + 4(|\alpha|(2x+1) + |\beta|)^2$ donc les suites (α_k) , (β_k) , (γ_k) sont bornées, les triplets $(\alpha_k, \beta_k, \gamma_k)$ sont en nombre fini. Parmi les valeurs de ces triplets, il y en a un qui est au moins atteint 3 fois (et même plus). Soient k_1, k_2, k_3 les indices correspondant alors les f_{k_i} sont 3 réels qui prennent 2 valeurs, 2 au moins sont égales. Ceci permet alors d'assurer la périodicité de la suite (u_n) .

- (4) Ici, on note $(\frac{1}{u_p}, \dots, \frac{1}{u_{p+T-1}})^*$ le développement périodique de r(u).
 - Grâce à la relation $\frac{1+\sqrt{5}}{2} = 1 + \frac{1}{1+\sqrt{5}}$, on obtient $\frac{1+\sqrt{5}}{2} = [1;(\frac{1}{1})^*]$.
 - Comme $\sqrt{5} = 2 + \frac{1}{2 + \sqrt{5}}$ alors $\sqrt{5} = [2; (\frac{1}{4})^*].$
 - On trouve $\sqrt{41} = [6, \frac{1}{2}, \frac{1}{2}, (\frac{1}{12}, \frac{1}{2}, \frac{1}{2})^*].$
 - $\sqrt{a^2+1} = [a; (\frac{1}{2a})^*].$
 - $\sqrt{a^2 + 2} = [a; (\frac{1}{a}, \frac{1}{2a})^*].$
 - Soit $x = \frac{1}{2}[a + \sqrt{a^2 + 4b}]$ alors x est racine de $X^2 aX b = 0$ donc $x = [a; \left(\frac{b}{a}\right)^*]$ (le développement n'est pas normal).

Partie IV

(1) Quitte à compléter par des coefficients nuls, on peut supposer que $n_1 = n_0 = n$, on va prouver le résultat par récurrence sur n.

Si n = 0 OK.

On suppose le résultat vrai à l'ordre n. On écrit

$$f(x) = \frac{1}{\frac{c_{00}}{c_{10}} + \left(\frac{c_{00} + c_{01}x + \dots + c_{0n}x^n}{c_{10} + c_{11}x + \dots + c_{1n}x^n} - \frac{c_{00}}{c_{10}}\right)} = \frac{c_{10}}{c_{00} + xf_1(x)}$$

où
$$f_1(x) = \frac{c_{20} + c_{21}x + \dots + c_{2n-1}x^{n-1}}{c_{10} + c_{11}x + \dots + c_{1n}x^n}$$
 et $c_{2k} = c_{10}c_{0,k+1} - c_{00}c_{1,k+1} = -\begin{vmatrix} c_{00} & c_{0k+1} \\ c_{10} & c_{1k+1} \end{vmatrix}$ pour $k \in [0, n-1]$.

On écrit ensuite $f_1(x) = \frac{c_{20}}{c_{10} + x f_2(x)}$ où $f_2(x) = \frac{c_{30} + c_{31}x + \dots + c_{3n-1}x^{n-1}}{c_{20} + c_{21}x + \dots + c_{2n-1}x^{n-1}}$ et on applique l'hypothèse de récurrence à f_2 .

(2) a) Pour l'algorithme, on utilise le programme MAPLE suivant

> restart;

Digits := 25

> T:=proc(n,x)

> local j,t;

```
> t:=2*n+1;
> for j from 1 to n do
> t:=2*(n-j)+1-x^2/t;
> od;
> t:=x/t
> end;
> Delta:=proc(n)
> local k;
> for k from 1 to 10 do
> print (k, Delta=(tan(.1*k)-T(n,.1*k))/tan(.1*k));
> od
> end;
> Delta(5);
```

On obtient alors le tableau suivant

	\boldsymbol{x}	0,1	0,2	0,3	0,4	0,5	0,6	0,7	0,8	0,9	1
Г	%	$7, 2.10^{-23}$	$6, 1.10^{-19}$	$1, 2.10^{-16}$	$5, 6.10^{-15}$	$1, 1.10^{-13}$	$1, 3.10^{-12}$	$1, 1.10^{-11}$	$7, 7.10^{-11}$	$4, 4.10^{-10}$	$2, 2.10^{-9}$

b) On reprend les mêmes notations que ci-dessus

```
E:=proc(n,x)
> local j,t;
> t:=4*n+2;
> for j from 1 to n-1 do
> t:=4*(n-j)+2+x^2/t;
> od;
> t:=1/(1-2*x/(2+x+x^2/t))
> end;

Deltaexp:=proc(n)
> local k;
> for k from 1 to 10 do
> print (k, Deltaexp=(exp(.1*k)-E(n,.1*k))/exp(.1*k));
> od
> end;

Deltaexp(5);
```

Et on obtient

x	0,1	0,2	0,3	0,4	0,5	0,6	0,7	0,8	0,9	1
%	$1,7.10^{-25}$	$1,4.10^{-22}$	$2, 8.10^{-20}$	$1, 2.10^{-18}$	$2, 1.10^{-17}$	$2, 3.10^{-16}$	$1,7.10^{-15}$	$9,7.10^{-15}$	$4,5.10^{-14}$	$1,8.10^{-13}$