SPÉCIALE MP* : X MATH 1 2002

L'utilisation des calculatrices n'est pas autorisée pour cette épreuve.

* * *

On attachera la plus grande importance à la clarté, à la précision et à la concision de la rédaction

* * *

La première partie est indépendante des trois autres.

* * *

Première partie

1. On considère une suite $(w_n)_{n\in\mathbb{N}}$ de réels strictement positifs vérifiant $\sum_{n=0}^{+\infty} w_n = 1$ et une suite $(a_n)_{n\in\mathbb{N}}$ de réels telle que $\sum_{n=0}^{+\infty} w_n a_n^2 < +\infty$.

Vérifier que la fonction $x \mapsto D_a(x) = \sum_{n=0}^{+\infty} w_n (a_n - x)^2$ est bien définie sur \mathbb{R} et atteint son minimum.

On déterminera ce minimum ainsi que l'ensemble des points où il est atteint.

2. On considère une fonction continue réelle de carré intégrable f sur l'intervalle]0,1[. Vérifier que la fonction $x \mapsto D_f(x) = \int_0^1 (f(t) - x)^2 dt$ est bien définie sur \mathbb{R} et atteint son minimum.

On déterminera ce minimum ainsi que l'ensemble des points où il est atteint.

Deuxième partie

Dans cette partie, on se donne une fonction réelle f sur l'intervalle I=]0,1[, continue par morceaux et intégrable.

- **3.** Vérifier que la fonction $x \mapsto \Delta(x) = \int_0^1 |f(t) x| dt$ est bien définie sur \mathbb{R} .
- **4.** a) Montrer que la fonction Δ est continue et convexe.
 - b) Déterminer les limites de $\Delta(x)$ lorsque x tend vers $+\infty$ où $-\infty$.
- 5. Montrer que Δ admet un minimum, que l'on notera V, et que l'ensemble M des points ou Δ atteint ce minimum est un intervalle.

1

6. Exemples. Déterminer Δ, V et M dans les deux cas suivants :

a)
$$f(t) = \begin{cases} 1 & \text{si } t \leq 1/2 \\ 0 & \text{si } t > 1/2 \end{cases}$$

b) f(t) = t.

Troisième partie

On se donne à nouveau une fonction f ayant les propriétés indiquées dans la **deu**xième partie; on suppose en outre que f est monotone par morceaux, c'est à dire qu'il existe des nombres

$$t_0 = 0 < t_1 < \ldots < t_n = 1$$

tels que f soit monotone sur chaque intervalle t_i, t_{i+1} . Quitte à rajouter des points, on peut supposer que f est continue sur chacun de ces intervalles et qu'elle se prolonge par continuité sur leur adhérence sauf éventuellement en 0 ou 1.

Pour tout intervalle J de \mathbb{R} , éventuellement réduit à un point, on définit une fonction $\chi_J(f)$ sur I par

$$\chi_J(f)(t) = \begin{cases} 1 & \text{si } f(t) \in J \\ 0 & \text{sinon} \end{cases}.$$

Lorsqu'il n'y aura pas d'ambiguïté sur la fonction f, on notera plus simplement χ_J cette fonction.

7. a) Soit $h_i(x) = \begin{cases} f(x) & \text{si } x \in]t_i, t_{i+1}[\\ 0 & \text{sinon} \end{cases}$ pour $i \in [0, n-1]$.

Montrer que $\mathcal{X}_J(h_i)$ est une fonction en escalier.

b) Soient $i \neq j$ des entiers distincts de [0, n-1]Montrer que si $0 \notin J$ alors

$$\chi_J(h_i + h_j) = \max(\chi_J(h_i), \chi_J(h_j)).$$

c) En déduire que la fonction $\chi_J(f)$ définie par l'énoncé est continue par morceaux et intégrable sur I.

On note $\lambda(J)$ son intégrale.

À partir de maintenant, f est fixée pour le restant de cette partie.

- 8. Établir les propriétés suivantes de l'application λ :
 - a) Étant donnés des intervalles J_1, \ldots, J_n deux à deux disjoints dont la réunion est encore un intervalle, on a

$$\lambda(J_1 \cup \ldots \cup J_n) = \lambda(J_1) + \cdots + \lambda(J_n) ;$$

b) Étant donné une suite croissante d'intervalles $(J_n)_{n\in\mathbb{N}}$, on a

$$\lambda(\bigcup_{n\in\mathbb{N}}J_n)=\sup_{n\in\mathbb{N}}\lambda(J_n)$$

(il est recommandé de faire intervenir la suite $u_n = \lambda(J_n)$, de dire pourquoi on a

$$\lim_{n \to +\infty} u_n = \sup_{n \in \mathbb{N}} \lambda(J_n)$$

puis d'utiliser le théorème de convergence dominée avec les fonctions χ_{J_n} en posant $J = \bigcup_{n \in \mathbb{N}} J_n) ;$

c) Etant donné une suite décroissante d'intervalles $(J_n)_{n\in\mathbb{N}}$, on a

$$\lambda(\bigcap_{n\in\mathbb{N}} J_n) = \inf_{n\in\mathbb{N}} \lambda(J_n).$$

9. Soit x un réel et ε un réel > 0; on pose

$$J_1 =]-\infty, x], J_2 =]x, x + \varepsilon[, J_3 = [x + \varepsilon, +\infty[.$$

a) Vérifier l'égalité

$$|f - x| = (x - f)\chi_{J_1} + (f - x)\chi_{J_2} + (f - x)\chi_{J_3}.$$

En déduire l'égalité suivante :

$$\frac{1}{\varepsilon}(\Delta(x+\varepsilon)-\Delta(x))-\lambda(J_1)+\lambda(J_3)=\lambda(J_2)+\frac{2}{\varepsilon}\int_0^1\chi_{J_2}(t)(x-f(t))\,\mathrm{d}t$$

où Δ est la fonction définie à la question 3.

- b) Montrer que Δ admet en tout point x une dérivée à droite que l'on déterminera (on utilisera les questions 8.b et 8.c).
- c) Même question pour la dérivée à gauche.
- d) Comparer ces deux dérivées et dire pour quelles valeurs de x elles sont égales.
- 10. On pose

$$\varphi(x) = \lambda(] - \infty, x]) \tag{1}$$

$$\varphi(x) = \lambda(] - \infty, x])$$

$$\varphi(x+0) = \lim_{n \to +\infty} \varphi(x+1/n) \quad \varphi(x-0) = \lim_{n \to +\infty} \varphi(x-1/n)$$
(2)

- a) Exprimer $\varphi(x+0)$ et $\varphi(x-0)$ en fonction de $\varphi(x)$ et de $\lambda(\{x\})$.
- b) Montrer que l'ensemble N des réels x vérifiant $\varphi(x-0) \leq 1/2 \leq \varphi(x)$, s'il n'est pas vide, est un intervalle fermé borné (on montrera que $N_d = \{x \in \mathbb{R} \mid 1/2 \leqslant \varphi(x)\}$ est un intervalle de la forme $[\alpha, +\infty[$ et que $N_g = \{x \in \mathbb{R} \mid \varphi(x-0) \leq 1/2\}$ est de la forme $]-\infty,\beta]$).
- c) Comparer les ensembles M (défini à la question 5.) et N et préciser le comportement de φ sur l'intérieur de N lorsque N n'est pas réduit à un point.

Quatrième partie

- 11. On se donne une fonction f sur I, réelle, continue, intégrable et monotone par morceaux; on note M_f et V_f ce qui était noté M et V.
 - a) Démontrer l'inclusion $M_f \subset f(I)$ (on pourra s'intéresser aux complémentaires de ces ensembles).
 - b) Montrer que M_f est réduit à un point, que l'on notera m_f .
 - c) Comparer V_f et $\int_0^1 |f(t)| dt$, puis m_f et $2 \int_0^1 |f(t)| dt$.
- 12. On considère une suite (g_n) de fonctions sur I, réelles, continues, intégrables et monotones par morceaux; on suppose que cette suite converge en moyenne vers une fonction g continue par morceaux, intégrable et monotone par morceaux. On pose $m_n = m_{g_n}$. Montrer que l'ensemble des valeurs d'adhérence de la suite (m_n) est non vide et inclus dans l'ensemble M_g des points où la fonction $x \mapsto \int_0^1 |g(t) - x| dt$ atteint son minimum.