SPÉCIALE MP* : CORRIGÉ DU DEVOIR SURVEILLÉ

PARTIE I

I.1. Soit $\varphi:(d_1,d_2)\in D(m)\times D(n)\mapsto d=d_1d_2\in D(mn)$. Si $d\in D(mn)$ alors montrons que l'on peut écrire de manière unique $d=d_1d_2$ où $d_1\in D(m)$ et $d_2\in D(n)$.

Si $m = \prod_{p \in \mathcal{P}} p^{\alpha(m)}$ et $n = \prod_{p \in \mathcal{P}} p^{\alpha(n)}$, comme $m \wedge n = 1$ alors $(\mathcal{P} \cap D(m)) \cap (\mathcal{P} \cap D(n)) = \emptyset$.

On pose alors $d_1 = \prod_{p \in \mathcal{P} \cap D(m)} p^{\alpha(d)}$ et $d_2 = \prod_{p \in \mathcal{P} \cap D(n)} p^{\alpha(d)}$. Ceci assure l'existence. Unicité : si $d_1 d_2 = d'_1 d'_2$ alors $d_1 \wedge d'_2 = 1$ (d_1 et d'_2 sont des diviseurs de 2 entiers premiers

entre eux) donc $d_1|d_1'$. De même $d_1'|d_1$ donc $d_1=d_1'$ et on a $d_2=d_2'$.

On peut poser alors $\psi: d \in D(mn) \mapsto (d_1, d_2) \in D(m) \times D(n)$ qui est l'application réciproque de φ .

On pouvait aussi poser directement $\psi(d) = (d \wedge m, d \wedge n)$ ce qui donne directement aussi la bijection entre $D_p(mn)$ et $D_p(m) \times D_p(n)$.

I.2. Première égalité :

on a évidemment $[1,n] \supset \bigcup_{d|n} \{k \in [1,n] \mid k \land n=d\}$ puis si $k \in [1,n]$ alors on pose $d = k \wedge n$ et on peut conclure à l'inclusion dans l'autre sens.

Les E_d sont évidemment disjoints!..... Deuxième égalité :

on a $k \wedge n = d \Leftrightarrow \frac{k}{d} \wedge \frac{n}{d} = 1$. On pose $d' = \frac{n}{d}$ et $k' = \frac{k}{d}$ alors $k' \wedge d' = 1$ et $k = k'd = k'\frac{n}{d'}$. On a alors équivalence entre

$$k \in \bigcup_{d|n} \{k \in [1, n] \mid k \wedge n = d\} \text{ et } k \in \bigcup_{d|n} \{\frac{kn}{d}, k \in [1, d] \mid k \wedge d = 1\} \text{ (on enlève les ')}.$$

Là aussi, les F_d sont disjoints.

b. Si
$$f$$
 est inversible alors $f * f^{-1}(1) = 1$ d'où $f(1) \neq 0$

Réciproque : si $f(1) \neq 0$, cherchons $g \in \mathcal{D}$ to f * g = I : Tout d'abord $g(1) = \frac{1}{f(1)}$.

On fait alors une récurrence forte : supposons que l'on ait calculé g(k) pour $k \leq n$ alors

$$g(k+1) = -\frac{1}{f(1)} \sum_{d|n+1, d < n+1} g(d)f(n+1).$$

On peut ainsi déterminer une seule application $g \in \mathcal{D}$ telle que f * g = I ce qui prouve

c. Vu le **b** μ est inversible. Si $n=p_1^{\alpha_1}\dots p_k^{\alpha_k}$ alors

$$\mu * E(n) = \sum_{d=p_{i_1}...p_{i_l}, i_1 < ... < i_l} (-1)^l \text{ pour } n \ge 2,$$

les autres termes étant nuls. Or le coefficient $(-1)^l$ se répète autant de fois que l'on peut écrire un sous-ensemble à l éléments pris dans [1, k], par conséquent

$$\mu * E(n) = \sum_{l=0}^{k} C_k^l (-1)^l = 0$$

PARTIE II

II.1. a. Soit f une fonction multiplicative et $k \in \mathbb{N}^*$ tel que $f(k) \neq 0$, alors $1 \land k = 1$ donc f(k.1) = f(k)f(1) = f(k) d'où f(1) = 1... Si $m \land n = 1$, on a vu au I.1 que, si d|mn alors $d = d_1d_2$ où $d_1|m$ et $d_2|n$, $d_1 \land d_2 = 1$ et que l'on a établi une bijection de l'ensemble D(mn) des diviseurs de mn sur l'ensemble $D(m) \times D(n)$. On a alors

$$f * g(mn) = \sum_{d_1 \mid m, d_2 \mid n} f(d_1) f(d_2) g(m/d_1) g(n/d_2) = f * g(m).f * g(n)$$

et $f * g(1) = 1 \neq 0$.

$$h(mn) = f(mn) + \sum_{ab < mn, a|m, b|n} f(a)g(m/a)f(b)g(n/b)$$
$$= h(m)h(n) + f(mn) - f(m)f(n)$$
$$\neq h(m)h(n)$$

- II.2. a. Si p premier divise mn avec $m \wedge n = 1$ alors il divise soit m soit n donc

$$\begin{split} \Phi_{\alpha}(mn) &= m^{\alpha} n^{\alpha} \prod_{p \in \mathcal{P}, \ p \mid mn} \left(1 - \frac{1}{p^{\alpha}} \right) \text{ et, en utilisant le I.1} \\ &= m^{\alpha} \prod_{p \in \mathcal{P}, \ p \mid m} \left(1 - \frac{1}{p^{\alpha}} \right) n^{\alpha} \prod_{p \in \mathcal{P}, \ p \mid n} \left(1 - \frac{1}{p^{\alpha}} \right) \end{split}$$

donc Φ est multiplicative. Il suffit alors de vérifier l'égalité pour $n=p^k$ où p est un nombre premier. Or $\Phi_{\alpha}(p^k)=p^{k\alpha}\left(1-\frac{1}{p^{\alpha}}\right)$ qui est égal à $\mu*\omega_{\alpha}(p^k)$ c.q.f.d. 3

b. On sait que ω_{α} est fortement multiplicative donc on vérifie l'égalité sur \mathcal{Q} :

$$\omega_{\alpha} * (\mu.\omega_{\alpha})(p^{\beta}) = \omega_{\alpha}(p^{\beta})\omega_{\alpha}(1) - \omega_{\alpha}(p^{\alpha-1}\omega_{\alpha}(p)) = 0$$

et $\omega_{\alpha} * (\mu.\omega_{\alpha})(1) = 1$ On a donc $\omega_{\alpha}^{-1} = \mu\omega_{\alpha}...$

On en déduit $\Phi_{\alpha}^{-1} = \mu^{-1} * \omega_{\alpha}^{-1} = E * (\mu \omega_{\alpha})$ ce qui donne la relation attendue.....

II.3. a. Si (1) est vraie alors, pour $n \in \mathbb{N}^*$ donné, on a

$$g(n) = \prod_{d|n} (f(d))^{a(n/d)} = \prod_{d|n} \exp[a(n/d)\ln(f(d))] = \exp(a * \ln f)(n).$$

Comme g>0 alors on obtient $\ln g=a*\ln f$ qui est directement équivalent à $\ln f$ $a^{-1} * \ln g \text{ c.q.f.d.} \dots 2$

b. En posant $\theta(m) = \frac{P(m)}{m^{\varphi(m)}}$ et en tenant compte du fait que $\mu * E = I$, il suffit de prouver la relation

$$\forall n \in \mathbb{N}^*, \frac{n!}{n^n} = \prod_{d|n} \theta(d).$$

Or on a $\frac{n!}{n^n} = \prod_{k=1}^n \frac{k}{n} = \prod_{d|n} \left(\prod_{k \wedge n = d} \frac{k}{n} \right).$

Soit $d \in D(n)$, avec $E_d = \{k \in [1, n] | k \wedge n = d\}$ et $F_d = \{k' \in [1, n/d] | k' \wedge (n/d) = 1\}$. L'application : $k' \in F_d \mapsto dk' \in E_d$ est bijective donc $\prod_{k \in E_d} \frac{k}{n} = \prod_{k' \in F_d} \frac{k'}{(n/d)} = \theta(n/d)$

c. On a $H(n) = \sum_{d|n} \left(\sum_{k \in E_d} h\left(\frac{k}{n}\right) \right) = \sum_{d|n} \left(\sum_{k' \in E_d} h\left(\frac{k}{(n/d)}\right) \right) = \sum_{d|n} \widetilde{H}\left(\frac{n}{d}\right) = E * \widetilde{H}(n)$

donc H = E * H.

On termine par $E^{-1}*H=\widetilde{H}$ i.e. $\widetilde{H}=\mu*H.$

En prenant $h(x) = \exp(2i\pi x)$ alors H(n) est la somme des racines primitives $n^{\text{ièmes}}$ de l'unité. Cette somme vaut donc $(\mu * H)(n) = \sum_{d|n} \mu(d)H(d/n)$. Mais on sait ici que

H = I (calcul classique). On a donc $H(n) = \mu(n)$ c.q.f.d......

PARTIE III

III.1. a. Si d désigne un diviseur de N, on note $O_d = \{e^{i2k\pi/n}, k \in E_d\}$. Vu le I.2, on sait que les $(O_d)_{d|N}$ forment une partition de U_N et, en posant d' = n/d, on peut écrire $O_d = \{ e^{i2k'\pi/d'}, \ k' \wedge d' = 1 \}$ ensemble des racines primitives de $\mathbb{U}_{d'}$ d'où

$$X^{N} - 1 = \prod_{\zeta \in U_{N}} (X - \zeta) = \prod_{d \mid N} \left(\prod_{\zeta \in O_{d}} (X - \zeta) \right) = \prod_{d' \mid N} \Psi_{d'}(X).$$

On a $\Psi_1(X) = X - 1$ et raisonnons par récurrence (forte) sur N:

si $\Psi_m \in \mathbb{Z}[X]$ pour m < N alors $\Psi_N(X) = \frac{X^N - 1}{F(X)}$ où $F(X) = \prod_{d \mid N, d < N} \Psi_d(X)$. Or F

est un polynôme normalisé donc $\Psi_N \in \mathbb{Z}[X]$

b. On déduit du a) et du résultat du préliminaire que $c_k(n) \in \mathbb{Z}$. Si $n = 1, c_k(1)$ n'est

III.2. Soit
$$g(p) = \frac{1}{k} \sum_{m=0}^{k-1} \widehat{f}(m) \zeta^{-mp}$$
:

$$\sum_{p=0}^{k-1} \widehat{g}(p) \zeta^{mp} = \frac{1}{k} \sum_{(p,q) \in [0,k-1]} f(q) \zeta^{p(m-q)} = \frac{1}{k} \sum_{q=0}^{k-1} f(q) \left(\sum_{p=0}^{k-1} \zeta^{p(m-q)} \right).$$

Or $\sum_{p=0}^{k-1} \zeta^{p(m-q)} = k$ si $m-q \equiv 0[k]$ et vaut 0 dans les autres cas. Si m est choisi dans [0, k-1] alors la somme considérée vaut $\widehat{f}(m)$ (en remarquant que $\widehat{f}(0) = f(k)$). Ceci prouve bien l'existence de g. L'unicité est en fait assurée par la symétrie des formules. 3

(a)
$$a_k(p) = \frac{1}{k} \sum_{q=0}^{k-1} \zeta^{-pq} \left(\sum_{d|q \wedge k} f(d)g(k/d) \right).$$

Si $d|q \wedge k$ alors d|k et si on se donne $d \in D(k)$ alors $d|q \wedge k \Leftrightarrow d|q$ donc on peut réécrire l'égalité (a) sous la forme :

(b)
$$a_k(p) = \frac{1}{k} \sum_{d|k} \left(\sum_{d|q,q \in [0,k-1]} \zeta^{-pq} f(d) g(k/d) \right) = \frac{1}{k} \sum_{d|k} f(d) g(k/d) \sum_{d|q,q \in [0,k-1]} \zeta^{-pq}.$$

Maintenant, si $d \in D(k)$ alors l'application : $c \in [0, k/d-1] \mapsto cd \in \{q \in [0, k-1], d|q\}$ est bijective d'où : $\sum_{d|q,q \in [0,k-1]} \zeta^{-pq} = \sum_{c=0}^{k/d-1} \zeta^{-pdc} = \begin{cases} 0 & \text{si } pd \not\equiv 0[k] \\ k/d & \text{si } pd \equiv 0[k] \end{cases} \text{car } \zeta^{-pd} \in U_{k/d}$ et $\zeta^{-pq} = 1$ ssi $qd \equiv 0[k]$.

En reportant dans (b), on obtient

(c)
$$a_k(p) = \frac{1}{k} \sum_{d|k} f(d)g(k/d) \left(\sum_{c=0}^{k/d-1} \zeta^{-pdc} \right).$$

Comme $d \mapsto k/d$ est une involution dans D(k), (c) nous donne :

(d)
$$a_k(p) = \frac{1}{k} \sum_{d|k} f(k/d)g(d) \left(\sum_{c=0}^{d-1} \zeta^{-pkc/d} \right).$$

Or on a vu que la somme entre parenthèses valait d si d|m et 0 autrement. On peut alors conclure, à l'aide de (d) que

$$a_k(p) = \frac{1}{k} \sum_{d|k|d|m} df(k/d)g(d).$$

b. On prend ici $f = \omega_1$ et $g = \mu$ et on veut prouver que $s_k(n) = c_k(n)$. D'après les résultats ci-dessus, on a $s_k(n) = \sum_{p=0}^{k-1} \widehat{a}_k(p) \zeta^{pm}$ où

$$a_k(p) = \sum_{d|(p \wedge k)} \frac{d}{k} \omega_1(k/d) \mu(d) = \sum_{d|(p \wedge k)} \mu(d) = E * \mu(p \wedge k) = I(p \wedge k).$$

$$\Delta(p^s) = \begin{cases} p^s \left(1 - \frac{1}{p}\right) & \text{si } p \notin D(N) \\ p^s & \text{si } p | N \end{cases}$$

$$\Gamma(p^s) = \begin{cases} p^s \mu(1) + p^{s-1} \mu(p) = p^s - p^{s-1} & \text{si } p \notin D(N) \\ p^s \mu(1) = p^s & \text{si } p | N \end{cases}$$

b. On reprend l'expression de $c_k(n)$ du 3 $^{\circ}$ - b) ci-dessus,

(e)
$$c_k(n) = \sum_{d|a} d\mu(aN/d) = \sum_{d|a} \frac{a}{d}\mu(dN)$$

en utilisant l'involution $d \mapsto a/d$ de D(a).

Si $d \wedge N \neq 1$ alors on a $\mu(dN) = 0$ et si $d \wedge N = 1$ alors $\mu(dN) = \mu(d)\mu(N)$ donc (e) s'écrit :

$$c_k(n) = \sum_{d|a,d \wedge N=1} \frac{a}{d} \mu(d) \mu(N) = \mu(N) \sum_{d|a,d \wedge N=1} \frac{a}{d} \mu(d)$$

et, grâce au a) ci-dessus,

$$(f) c_k(n) = a\mu(N) \prod_{p \in \mathcal{P}, p \mid a, p \notin D(N)} \left(1 - \frac{1}{p}\right).$$

Or $\mathcal{A}=\{p\in\mathcal{P},p|a\text{ et }p\in D(N)\}$ et $\mathcal{B}=\{p\in\mathcal{P},p|N\}$ forment un partage de $\mathcal{C}=\{p\in\mathcal{P},p|aN\}$. Comme $\varphi(N)=N\prod_{p\in\mathcal{B}}\left(1-\frac{1}{p}\right)$ et $\varphi(aN)=aN\prod_{p\in\mathcal{C}}\left(1-\frac{1}{p}\right)$

alors
$$a \prod_{p \in \mathcal{A}} \left(1 - \frac{1}{p} \right) = \frac{\varphi(aN)}{\varphi(N)}$$
 et donc

$$c_k(n) = \mu(N) \frac{\varphi(aN)}{\varphi(N)} = \mu(N) \frac{\varphi(aN)}{\varphi(N)}.$$