SPÉCIALE MP* : CORRIGÉ DE L'ÉPREUVE MINES MATHS 2 2006

Quelques propriétés des racines de P'_n

 ${\bf 1}\,$ On applique le théorème de Rolle, $P_n(k)=P_n(k+1)=0$ donc il existe $x_{n,k}\in]k,k+1[$ tel que $P'_n(x_{n,k}) = 0$. On trouve alors n racines, $x_{n,k}, k \in [0, n-1]$ et P'_n est un polynôme de degré n donc on a toutes ses racines.

Conclusion: P'_n admet exactement une racine $x_{n,k}$ dans chacun des intervalles k, k+1, pour $k \in [0, n-1]$.

2 On a $P_n(X)=X^{n+1}-\Big(\sum_{k=1}^n k\Big)X^n+Q_{n-1}(X)$ où Q_{n-1} est un polynôme de degré n-1 d'où $P'_n(X)=(n+1)X^n-\frac{n^2(n+1)}{2}X^{n-1}+Q'_{n-1}(X)$. On utilise alors les relations

entre coefficients et racines pour trouver $\sum_{k=0}^{n-1} x_{n,k} = \frac{n^2}{2} \text{ et } \sum_{k=0}^{n-1} \alpha_{n,k} = \frac{n^2}{2} - \frac{(n-1)n}{2} = \frac{n}{2}.$

3 En dérivant la relation $P_n(n-X) = (-1)^{n+1}P_n(X)$ on a $P'_n(n-X) = (-1)^nP'_n(X)$ ce qui donne $P'_n(n-x_{n,k}) = 0$. Or $n-x_{n,k} \in]n-k-1, n-k[$ et par unicité, vu la question

1, on en déduit que $n - x_{n,k} = x_{n,n-k-1}$. On a ainsi $x_{n,k} + x_{n,n-k-1} = n$.

- 4 Immédiat : on écrit $\alpha_{n,k} + \alpha_{n,n-k-1} = x_{n,k} k + x_{n,n-k-1} (n-k-1) = 1$.
- 5 Les racines de P'_n sont simples donc pour chaque $x_{n,k}$, P'_n change de signe. On obtient alors les tableaux de variation suivants :

Si n est pair

x	$-\infty$	()	x_{n_0}		1	x_{n_1}	 2k		$x_{n,2k}$		2k + 1		$x_{n,2k+1}$		2k+2	
$P'_n(x)$		+	+	0	_	_	0		+	0	_		_	0	+		
_ , ,			7		/				/		/						
$P_n(x)$		<i>y</i> ()			0		0				0			7	0	

Si n est impair

x	$-\infty$		0		x_{n_0}		1		x_{n_1}	 2k		$x_{n,2k}$		2k+1		$x_{n,2k+1}$		2k+2	
$P'_n(x)$		_		_	0	+		+	0		_	0	+		+	0	_		
		/						/									/		
$P_n(x)$			0				0			0				0				0	
						7							7						

- **6** Le signe de $(-1)^{n-k}P_n(x_{n,k})$ est constant et vaut 1 (distinguer les cas n pair et n impair).
- 7 On dérive la relation $P_n(X) = (X n)P_{n-1}(X)$: $P'_n(X) = P_{n-1}(X) + (X n)P'_{n-1}(X)$ et en appliquant ceci à $x_{n-1,k}$ on obtient $P'_n(x_{n-1,k}) = P_{n-1}(x_{n-1,k})$ et, en utilisant la question **6**, on en déduit que $(-1)^{n-k}P'_{n-1}(x_{n-1,k}) = (-1)\times(-1)^{n-1-k}P_{n-1}(x_{n-1,k}) < 0$ pour $k \in [0, n-2]$.
- 8 Par convention, on pose $x_{n,-1} = -\infty$ et $x_{n,n} = +\infty$. On a ainsi

$$x_{n,k-1} < k < x_{n,k} < k+1 < x_{n,k+1}$$
 et $k < x_{n-1,k} < k+1$ pour $k \in [0, n-2]$.

On a par conséquent $x_{n-1,k} \in]x_{n,k-1},x_{n,k}[$ ou $x_{n-1,k} \in]x_{n,k},x_{n,k+1}[$ mais, comme à la question 5 on avait $(-1)^{n-k}P'_n(x) < 0$ sur $]x_{n,k}, x_{n,k+1}[$ alors $x_{n-1,k}$ est dans ce dernier intervalle vu la question 7.

Conclusion: on a $x_{n-1,k} > x_{n,k}$ pour $k \in [0, n-2]$.

- 9 On dérive la relation $P_n(X) = XP_{n-1}(X-1)$: $P'_n(X) = P_{n-1}(X-1) + XP'_{n-1}(X-1)$ et, en substituant $1 + x_{n-1,k-1}$ à X, on trouve $P'_n(1 + x_{n-1,k-1}) = P_{n-1}(1 + x_{n-1,k-1})$. La question 6 nous donne alors $(-1)^{n-k}P'_n(1 + x_{n-1,k-1}) > 0$ pour $k \in [1, n-1]$.
- 10 On procède par encadrement comme à la question 8.
- 11 On a donc, en rassemblant les résultats des questions 8 et 10:

$$\underbrace{x_{n-1,k}}_{\alpha_{n-1,k}+k} > \underbrace{x_{n,k}}_{\alpha_{n,k}+k} > \underbrace{1+x_{n-1,k-1}}_{1+\alpha_{n-1,k-1}+k-1}$$

soit $\alpha_{n-1,k} > \alpha_{n,k} > \alpha_{n-1,k-1}$ donc $(\alpha_{n,k})_{k \in [0,n-1]}$ est croissante.

Un développement asymptotique

12 $h_x(t) \underset{0}{\sim} t^{x-1}$ intégrable au voisinage de 0 ssi x > 0 et $t^2 h_x(t) \to 0$ en $+\infty$ donc $h_x(t)$ est intégrable au voisinage de $+\infty$.

Conclusion : $\mathcal{E} =]0, +\infty[$.

- 13 On a (par exemple) $\Gamma(x) \geqslant \int_1^2 t^{x-1} e^{-t} dt > 0$ car c'est l'intégrale d'une fonction continue (h_x) strictement positive.
- **14** On applique le théorème de Leibniz en posant $f(x,t) = h_x(t)$: si $x \in [a,b] \subset]0,+\infty[$ alors, pour $i \in \{1,2\}$, on a
 - $\frac{\partial^i f}{\partial x^i}(x,t) = (\ln t)^i t^{x-1} e^{-t}$ est continue séparément par rapport à x et t sur $]0,+\infty[$,
 - $\left| \frac{\partial^i f}{\partial x^i}(x,t) \right| \le |\ln t|^i e^{-t} \max(t^{a-1},t^{b-1}) = \varphi(t)$. $\varphi(t) \sim |\ln t| e^{-t} t^{a-1}$ est intégrable au voisinage de 0 car $t^{1-a/2}\varphi(t) \to 0$ et 1-a/2 > -1, $t^2\varphi(t) \to 0$ en $+\infty$ donc φ est aussi intégrable au voisinage de $+\infty$ donc φ est intégrable sur $]0,+\infty[$.

On peut donc conclure : Γ est de classe C^2 sur tout segment de $]0, +\infty[$ donc sur $]0, +\infty[$ puis

$$\Gamma'(x) = \int_0^{+\infty} (\ln t) t^{x-1} e^{-t} dt \text{ et } \Gamma''(x) = \int_0^{+\infty} (\ln t)^2 t^{x-1} e^{-t} dt.$$

15 C'est une simple application du théorème d'intégration par parties : soit $0 < \varepsilon < T$ alors, en dérivant t^x et en intégrant e^{-t} , on a

$$\int_{\varepsilon}^{T} t^{x} e^{-t} dt = \left[-t^{x} e^{-t} \right]_{\varepsilon}^{T} + x \int_{\varepsilon}^{T} t^{x-1} e^{-t} dt$$

or $T^x e^{-T} \to 0$ en $+\infty$ et $\varepsilon^x e^{-\varepsilon} \to 0$ en 0 et comme les fonctions intégrées sont intégrables sur $]0, +\infty[$ alors on peut prendre la limite quand $T \to +\infty$ et $\varepsilon \to 0$ pour obtenir finalement $\Gamma(x+1) = x\Gamma(x)$.

16 Ψ est de classe \mathcal{C}^1 sur $]0, +\infty[$ (rapport de deux fonctions de classe \mathcal{C}^1 , le dénominateur ne s'annulant pas) donc il suffit de prouver que $\Psi'(x) > 0$ pour $x \in]0, +\infty[$:

$$\Psi'(x) = \frac{\Gamma''(x)\Gamma(x) - (\Gamma'(x))^2}{\Gamma(x)^2}.$$

On utilise alors l'inégalité de Cauchy-Schwarz :

$$\left(\int_0^{+\infty} (\ln t) t^{x-1} e^{-t} \, \mathrm{d}t \right)^2 \leqslant \left(\int_0^{+\infty} |\ln t| t^{x-1} e^{-t} \, \mathrm{d}t \right)^2 \leqslant \int_0^{+\infty} (\ln t)^2 t^{x-1} e^{-t} \, \mathrm{d}t \times \int_0^{+\infty} t^{x-1} e^{-t} \, \mathrm{d}t$$

en écrivant $|\ln t| t^{x-1} e^{-t} = |\ln t|^{1/2} t^{(x-1)/2} e^{-t/2} \times t^{(x-1)/2} e^{-t/2} = f(t)g(t)$. L'inégalité est stricte car le cas d'égalité dans l'inégalité de Cauchy-Schwarz n'est réalisé que si les 2 fonctions f et g sont proportionnelles. Comme $f(t) = |\ln t| g(t)$, on peut affirmer que ce n'est pas le cas et donc on a bien $\Gamma''(x)\Gamma(x) - (\Gamma'(x))^2 > 0$ ce qui permet de conclure.

17 Immédiat, en effet on a $\Psi(x+1) = \frac{\Gamma'(x+1)}{\Gamma(x+1)} = \frac{\Gamma(x) + x\Gamma'(x)}{x\Gamma(x)} = \frac{1}{x} + \frac{\Gamma'(x)}{\Gamma(x)}$ et donc $\Psi(x+1) = \frac{1}{x} + \Psi(x)$.

18 On a

$$\phi(n+1) - \phi(n) = \underbrace{\Psi(n+1) - \Psi(n)}_{=1/n} - \ln(n+1) + \ln n = \frac{1}{n} - \ln(1+1/n) = O\left(\frac{1}{n^2}\right)$$

donc la série aux différences $\sum \phi(n+1) - \phi(n)$ converge.

- **19** Comme $\phi(n) = \sum_{k=1}^{n-1} [\phi(k+1) \phi(k)] + \phi(1)$, on en déduit que la suite $(\phi(n))$ converge.
- 20 Comme Ψ est strictement croissante (cf. question 16) alors $\Psi(n) \leqslant \Psi(x) \leqslant \Psi(n+1)$ pour $x \in [n, n+1]$ donc $\underbrace{\Psi(n) \ln x}_{=\phi(n) + \ln(\frac{n}{x})} \leqslant \phi(x) \leqslant \underbrace{\Psi(n+1) \ln x}_{=\phi(n+1) + \ln(\frac{n+1}{x})}$ par conséquent $\phi(x)$

admet une limite en $+\infty$ qui vaut aussi C.

21 C'est le théorème (maintenant hors programme) d'intégration des équivalents que l'on demande de redémontrer dans ce cas particulier :

soit $\varepsilon > 0$ alors il existe X tel que $t \geqslant X \Rightarrow |C - \phi(t)| \leqslant |C| \frac{\varepsilon}{2}$ on a donc, pour $x \geqslant X$,

$$\left| \int_{1}^{x} \phi(t) \, \mathrm{d}t - Cx \right| \leq \underbrace{\left| \int_{1}^{X} \phi(t) \, \mathrm{d}t - CX \right|}_{=A} + \underbrace{\int_{X}^{x} |\phi(t) - C| \, \mathrm{d}t}_{\leq (x-X)|C|\varepsilon/2 \leq x|C|\varepsilon/2}.$$

Comme on a supposé que $C \neq 0$ alors $Cx \to \infty$ quand $x \to +\infty$ donc $\frac{A}{Cx} \to 0$ quand $x \to +\infty$. On choisit alors $X_1 \geqslant X$ tel que $\left| \frac{A}{Cx} \right| \leqslant \frac{\varepsilon}{2}$ pour tout $x \geqslant X_1$ par conséquent $\left| \int_1^x \phi(t) \, \mathrm{d}t - Cx \right| \leqslant \varepsilon |C| x$ ce qui signifie exactement $\int_1^x \phi(t) \, \mathrm{d}t \sim Cx$.

$$\int_{1}^{n} \phi(t) dt = \int_{1}^{n} \frac{\Gamma'(t)}{\Gamma(t)} dt - \int_{1}^{x} \ln t dt$$
$$= \ln \Gamma(n) - n \ln n + n - 1 = \ln n! - (n+1) \ln n + n - 1$$

d'où, en utilisant la formule de Stirling,

$$= \ln\left(\frac{n}{e}\right)^n \sqrt{2\pi n} (1 + o(1)) - (n+1)\ln n + n - 1$$

$$= n \ln n - n + \frac{1}{2} \ln n - (n+1)\ln n + n + O(1) = -\frac{1}{2} \ln n + O(1)$$

Conclusion : $\int_{1}^{n} \phi(t) dt = o(n)$ ce qui est contradictoire avec le résultat de la question **21** donc C = 0.

23 La conclusion devient alors immédiate. En effet, par une récurrence simple, on a

$$\Psi(x+m+1) = \sum_{j=0}^{m} \frac{1}{x+j} + \Psi(x) = \phi(x+m+1) - \ln(x+m+1)$$
$$= -\ln m + \underbrace{\phi(x+m+1)}_{\to 0} - \underbrace{\ln[(x+m+1)/m]}_{\to 0}$$

donc on a bien
$$\lim_{m \to +\infty} \left[\sum_{j=0}^m \frac{1}{x+j} + \Psi(x) - \ln m \right] = 0.$$

Comportement asymptotique des $\alpha_{n,k}$

24 La décomposition de la fraction rationnelle $\frac{P'_n}{P_n}$ donne $\frac{P'_n(x)}{P_n(x)} = \sum_{j=0}^n \frac{1}{x-j}$. On prend alors $x = x_{n,k} = k + \alpha_{n,k}$ qui annule P'_n d'où

$$\frac{P'_n(x_{n,k})}{P_n(x_{n,k})} = \sum_{j=0}^n \frac{1}{\alpha_{n,k} + k - j} = \sum_{j=0}^k \frac{1}{\alpha_{n,k} + k - j} + \sum_{j=k+1}^n \frac{1}{\alpha_{n,k} + k - j}$$
$$= \sum_{i=0}^k \frac{1}{\alpha_{n,k} + i} - \sum_{i=0}^{n-k-1} \frac{1}{(1 - \alpha_{n,k}) + i} = 0$$

en posant i = k - j dans la première somme et i = j - k - 1 dans la deuxième.

25 On utilise les questions 23 et 24 mais il faut adapter la question 23 : on a

$$\sum_{i=0}^{m} \frac{1}{x+j} + \Psi(x) - \ln m = \phi(x+m+1) - \ln \frac{x+m+1}{m}$$

et on encadre chacune de ces quantités :

$$\underbrace{\Psi(m+1) - \ln(m+2)}_{=\phi(m+1) + \ln\frac{m+1}{m+2}} \leqslant \phi(x+m+1) = \Psi(x+m+1) - \ln(x+m+1) \leqslant \underbrace{\Psi(m+2) - \ln(m+1)}_{=\phi(m+2) + \ln\frac{m+2}{m+1}}$$

et $\left| \ln \frac{x+m+1}{m} \right| \le \ln \frac{m+2}{m}$ ce qui permet de dire que la limite dans la question 23 est uniforme par rapport à $x \in]0,1[$. Ensuite

$$\Psi(u_n) - \Psi(1 - u_n) + \underbrace{\sum_{j=0}^{[nt]} \frac{1}{u_n + j} - \sum_{j=0}^{n-[nt]-1} \frac{1}{1 - u_n + j}}_{=0} - \ln[nt] + \ln(n - [nt] - 1) \to 0$$

$$\operatorname{car} \lim_{n \to +\infty} [nt] = +\infty. \text{ Or } \ln(n - [nt] - 1) - \ln[nt] = \ln \frac{1 - k_n - 1/n}{k_n} \text{ où } k_n = \frac{[nt]}{n} \to t.$$
On en déduit alors la formule
$$\lim_{n \to +\infty} \left[\Psi(u_n) - \Psi(1 - u_n) + \ln\left(\frac{1 - t}{t}\right) \right] = 0.$$

26 C'est là enfin que l'on utilise la fonction Arc cot et la formule des compléments. Si on dérive logarithmiquement la formule des compléments, on obtient

$$\frac{\Gamma'(x)}{\Gamma(x)} - \frac{\Gamma'(1-x)}{\Gamma(1-x)} = \Psi(x) - \Psi(1-x) = -\pi\cot(\pi x).$$

En reprenant la formule de la question précédente, on a

$$\Psi(u_n) - \Psi(1 - u_n) = -\pi \cot(\pi u_n) = -\ln\frac{1 - t}{t} + o(1)$$