SPÉCIALE MP* : CORRIGÉ DU DEVOIR LIBRE

Partie I

- **I.1.** Si $n = \deg P$ alors $P^{(n+1)} = 0$ donc la sommation étant finie, elle est parfaitement définie.
- **I.2.** On a immédiatement P = Q Q'.
- **I.3.** On remarque ensuite que $\alpha e^{-\alpha x}(Q(\alpha x) Q'(\alpha x)) = [e^{-\alpha x}Q(\alpha x)]'$. Or Q Q' = P donc, après intégration, on obtient

$$R(\alpha) = e^{\alpha}Q(0) - Q(\alpha).$$

Partie II

Si $A(X) = X^p A_1(X)$ alors $A_1(e) = 0$, si on choisit pour p la valuation de A alors $A_1(0) \neq 0$ ce qui revient à supposer que $a_0 \neq 0$.

II.1. a. On a $P(X) = \frac{1}{(p-1)!} \sum_{m=p-1}^{np+p-1} b_m X^m$ où $b_m \in \mathbb{Z}$ car $\mathbb{Z}[X]$ est un anneau, or

$$\left(\frac{1}{(p-1)!}b_m X^m\right)^{(p)} = b_m \frac{m(m-1)(\dots)(m-p+1)}{(p-1)!} X^{m-p}$$
$$= pb_m \binom{m}{p} X^{m-p}$$

i.e.

tous les coefficients de $P^{(p)}$ sont entiers et divisibles par p,

il en est donc de même pour $P^{(r)}$ avec $r \ge p$.

b. Les nombres $j \in [1, n]$ sont racines d'ordre p de P donc $P^{(r)}(j) = 0$ pour $r \in [0, p-1]$. 0 est racine d'ordre p-1 de P donc, de même, $P^{(r)}(0) = 0$ pour $r \in [0, p-2]$. On a

$$P^{(p-1)}(0) = (-1)^{np} (n!)^p$$

(il suffit de regarder le coefficient du terme de degré p-1 dans l'expression de P).

II.2. Comme $Q(j) = e^{j}Q(0) - R(j)$ vu la partie I, alors, par sommation :

$$\sum_{j=0}^{n} a_j Q(j) = Q(0) \sum_{j=0}^{n} a_j e^j - \sum_{j=0}^{n} a_j R(j)$$

d'où, en tenant compte de l'hypothèse A(e) = 0, on en déduit que

$$\sum_{j=0}^{n} a_{j}Q(j) = -\sum_{j=1}^{n} a_{j}R(j)$$

car R(0) = 0.

II.3. a. On a $Q(j) = \sum_{r \geqslant 0} P^{(r)}(j) = \sum_{r \geqslant p} P^{(r)}(j)$ et comme chaque terme de la dernière somme est un entier multiple de p (en effet $P^{(r)}(X) = p \sum_{m=p-1}^{np+p-1} b_m \binom{m}{p} X^{m-p} \in p\mathbb{Z}[X]$), il en est de même de la somme (finie) et donc de Q(j).

Conclusion:
$$\sum_{j=1}^{n} a_j Q(j) \text{ est divisible par } p.$$

b. On a $a_0 P^{(p-1)}(0) = a_0 (-1)^{np} (n!)^p$. Si $p > \max(n, |a_0|)$ alors p (qui est un nombre premier) est premier avec n! et a_0 donc $a_0 P^{(p-1)}(0)$ n'est pas divisible par p.

Pour de telles valeurs de p, $a_0Q(0) = a_0P^{(p-1)}(0) + a_0\sum_{r\geqslant p}P^{(r)}(0)$ n'est pas divisible

par p car les termes de la somme sont tous multiples de p et le premier terme ne l'est pas (on sait que $P^{(r)}(0) = 0$ pour $r \leq p - 2$).

Comme $\sum_{j=0}^{n} a_j Q(j)$ est un entier non divisible par p, il est non nul et, pour p grand

$$\left| \sum_{j=0}^{n} a_j Q(j) \right| \geqslant 1.$$

II.4. a. On sait que $R(j) = je^j \int_0^1 e^{-jx} P(jx) dx$ et donc, avec $j \le n$ et $e^{-jx} \le 1$ on obtient

$$\forall j \leqslant n, |R(j)| \leqslant ne^n \int_0^1 |P(jx)| dx.$$

Majorons |P(jx)|: si L(t) = (t-1)(t-2)(...)(t-n) alors $P(t) = \frac{(tL(t))^{p-1}L(t)}{(p-1)!}$.

Pour $t \in [k, k+1]$ (où $k \in [0, n-1]$), comme $\begin{cases} |t-i| \le k+1-i & \text{si } k-i \ge 0 \\ |t-i| \le i-k & \text{si } k-i \le -1 \end{cases}$ on

$$|tL(t)| \le (k+1).(\ldots).2.1.1.2.(\ldots).(n-k)$$

$$= (k+1)!(n-k)!$$

$$= \frac{(n+1)!}{\binom{n+1}{k+1}}$$

et, vu que $\binom{n+1}{k+1} \geqslant n+1$ pour $k \in [0,n-1]$ on obtient $|tL(t)| \leqslant n!$. Cette majoration étant indépendante de k elle est valable pour $t \in [0,n]$. On a de même $|L(t)| \leqslant n!$ d'où

$$\forall j \in [1, n], \ \forall x \in [0, 1], \ |P(jx)| \le \frac{(n!)^{p-1} n!}{(p-1)!}$$

et donc, en revenant à l'inégalité du début,

$$R(j) \leqslant ne^n \frac{(n!)^p}{(p-1)!}.$$

b. On a donc

$$\left| \sum_{j=1}^{n} a_{j} R(j) \right| \leq n e^{n} \frac{(n!)^{p}}{(p-1)!} \sum_{j=1}^{n} |a_{j}|$$
$$= A_{n} \frac{(n!)^{p}}{(p-1)!} = \alpha_{p}$$

où $A_n = ne^n \sum_{j=1}^n |a_j|$. n est un entier fixé et comme $\frac{\alpha_{p+1}}{\alpha_p} = \frac{n!}{p} \to 0$ on sait que $\alpha_p \to 0$ et donc, à partir d'un certain rang p_0 , vu que l'ensemble des nombres premiers est infini, on a

$$\left| \left| \sum_{j=1}^{n} a_j R(j) \right| \le \alpha_p < 1. \right|$$

c. Comme R(0) = 0 alors, en reprenant l'égalité du II.2. on a

$$1 \leqslant \left| \sum_{j=0}^{n} a_j Q(j) \right| = \left| \sum_{j=1}^{n} a_j R(j) \right| < 1$$

ce qui est contradictoire. Conclusion:

e est transcendant.

PARTIE III

III.1. a. Soit z un nombre algébrique et $A = \sum_{j=0}^{n} a_j X^j$ un polynôme annulateur de z. Soit $B(z) = A(-iz) = \sum_{j} a_{2j}(-1)^{j} z^{2j} - i \sum_{j} a_{2j+1} z^{2j+1}$ alors B(iz) = 0 mais les coefficients du polynôme B ne sont pas dans \mathbb{Z} . Cependant,

$$\left(\sum_{j} a_{2j}(-1)^{j} z^{2j}\right)^{2} + \left(\sum_{j} a_{2j+1} z^{2j+1}\right)^{2} = B(z). \left(\sum_{j} a_{2j}(-1)^{j} z^{2j} + i \sum_{j} a_{2j+1} z^{2j+1}\right)^{2}$$

est un polynôme à coefficients dans \mathbb{Z} annulateur de iz donc

$$iz$$
 est algébrique.

b. Si $a_nX^n+a_{n-1}X^{n-1}+\cdots+a_0$ est un polynôme annulateur de z alors le polynôme $X^n+a_{n-1}a_nX^{n-1}+\cdots+a_0a_n^n$ est

un polynôme unitaire annulateur de
$$a_n z$$
.

- c. Ceci est une conséquence immédiate des deux questions précédentes. En effet, d'après le a., vu l'hypothèse faite sur π , $i\pi$ est algébrique et d'après le b., il existe $c \in \mathbb{Z} \setminus \{0\}$ et $B \in \mathbb{Z}[X]$ tels que $B(ic\pi) = 0$.
- III.2. Comme il existe q tel que $\beta_q=i\pi$ et que $1+e^{i\pi}=0$ alors $\prod_{q=1}^n (1+e^{\beta_q})=0.$

$$\prod_{q=1}^{n} (1 + e^{\beta_q}) = 0.$$

En sachant que $\prod_{q=1}^{n} (X + e^{\beta_q}) = X^n + X^{n-1} \sum_{q} e^{\beta_q} + \dots + X^{n-k} \sum_{J_k} e^{\beta_{q_1} + \dots + \beta_{q_k}} + \dots + e^{\beta_1 + \dots + \beta_p}$ (développement d'un polynôme), si on remplace X par 1 alors on aura

$$\prod_{q=1}^{n} (1 + e^{\beta_q}) = 1 + \sum_{q} e^{\beta_q} + \sum_{q_1, q_2} e^{\beta_{q_1}} e^{\beta_{q_2}} + \dots + e^{\beta_1 + \dots + \beta_p}$$

qui est de la forme

$$E + \sum_{i=1}^{s} e^{\alpha_i}$$

(si l'une des sommes $\beta_{q_1} + \cdots + \beta_{q_k}$ est nulle, on rajoute 1 à E), les α_i étant des sommes des racines β_q .

III.3. a. On pose $I_t = \{j \in [1, s] \mid \exists J_t, \ \alpha_j = \sum_{i \in J_t} \beta_i \}$ alors, si k_t désigne le nombre de fois où il existe un J_t tel que $\sum_{i \in I_t} \beta_i = 0$,

$$B_t = \prod_{t=1}^n (X - c\xi_{J_t}) = X^{k_t} \prod_{j \in I_t} (X - c\alpha_j) \in \mathbb{Z}[X]$$

d'après la propriété R_2 . Donc $R_t = \frac{B_t}{X^{k_t}} \in \mathbb{Z}[X]$ est un polynôme unitaire et le polynôme unitaire $\prod R_t \in \mathbb{Z}[X]$ admet exactement pour racines les $c\alpha_i$.

Ce polynôme s'écrit $\prod_{i=1}^{s} (Y - c\alpha_i)$ et donc $(p-1)!P_1(Y) = Y^{p-1} \prod_{i=1}^{s} (Y - c\alpha_i)^p$ est

le polynôme
$$(p-1)!P(X)$$
 est aussi dans $\mathbb{Z}[X]$.

$$P^{(r)}(0) = p(p+1)(\ldots)r.b_r$$

est multiple de p vu que l'on a prouvé que les b_k étaient entiers.

c. On a $P(X) = P_1(cX)$ d'où $P^{(r)}(\alpha_j) = c^r P_1(c\alpha_j)$ et donc

$$\sum_{j=1}^{s} P^{(r)}(\alpha_j) = c^r \sum_{j=1}^{s} P_1^{(r)}(c\alpha_j).$$

Or, si on écrit

$$P_1(Y) = \frac{1}{(p-1)!} \left[Y^{ps+p-1} + u_{ps+p-2} Y^{ps+p-2} + \dots + u_{p-1} Y^{p-1} \right]$$

alors $P_1^{(r)}(Y)$ est un polynôme à coefficients entiers divisibles par p $(r \ge p)$ —cf. II.1.a.-

$$P_1^{(r)}(Y) = p \sum_{k=0}^d v_k Y^k \text{ où } v_k \in \mathbb{Z} \text{ et}$$

$$\sum_{j=1}^s P_1^{(r)}(c\alpha_j) = p \sum_{k=0}^d v_k \underbrace{\left(\sum_{j=1}^s (c\alpha_j)^k\right)}_{}$$

car les $c\alpha_i$ sont les racines d'un polynôme unitaire à coefficients dans \mathbb{Z} .

Conclusion : $\sum_{j=1}^{s} P^{(r)}(\alpha_j) = pc^r N \text{ où } N \in \mathbb{Z} \text{ i.e.}$ $\forall r \geq p, \sum_{j=1}^{s} P^{(r)}(\alpha_j) \text{ est un entier divisible par } p.$

III.4. $Q(\alpha_i) = e^{\alpha_i}Q(0) - R(\alpha_i)$ donc

$$EQ(0) + \sum_{j=1}^{s} Q(\alpha_j) = Q(0) \left(E + \sum_{j=1}^{s} e^{\alpha_j} \right) - \sum_{j=1}^{s} R(\alpha_j)$$
$$= -\sum_{j=1}^{s} R(\alpha_j)$$

car, d'après le III.2., le facteur de Q(0) est nul.

III.5. Si on revient à l'expression de P,

$$P^{(p-1)}(0) = c^{p-1}(-1)^{sp} \left(\prod_{j=1}^{s} c\alpha_j \right)^p$$

et, vu que les $c\alpha_j$ sont racines d'un polynôme unitaire, alors, d'après la propriété R_2 , on sait que $\prod_{j=1}^s c\alpha_j = m \in \mathbb{Z}$ (on peut par exemple utiliser les relations entre coefficients et racines d'un polynôme). Donc, pour $p > \max(c, |m|)$, $P^{(p-1)}(0)$ est un entier premier avec p (puisque p est premier avec c et m).

$$EQ(0) + \sum_{j=1}^{s} Q(\alpha_j) = P^{p-1}(0) + \sum_{r \ge p} P^{(r)}(0) + \sum_{j=1}^{s} Q(\alpha_j)$$

est alors un entier non nul (il est premier avec p) donc

$$\left| EQ(0) + \sum_{j=1}^{s} Q(\alpha_j) \right| \geqslant 1.$$

III.6. a. Comme $P(\alpha_j x) = \frac{(c\alpha_j x)^{p-1}}{(p-1)!} \prod_{k=1}^s c^p (\alpha_j x - \alpha_k)^p$ alors, avec $H = \sup_j |\alpha_j|$ on a :

$$\forall x \in [0, 1], |\alpha_j x - \alpha_k| \le |\alpha_j| + |\alpha_k| \le 2H$$

et donc

$$\forall x \in [0,1], |P(\alpha_j x)| \le \frac{(|c|H)^{p-1}}{(p-1)!} \prod_{k=1}^{s} (2|c|H)^p = \frac{(|c|H)^{p-1}}{(p-1)!} (2|c|H)^{ps}$$

d'où, en utilisant le fait que $|e^z| = e^{\operatorname{Re}(z)} \leq e^{|z|}$,

$$|R(\alpha_j)| \leq \frac{(|c|H)^{p-1}}{(p-1)!} (2|c|H)^{ps} \int_0^1 |\alpha_j| e^{\alpha_j (1-s)} dx$$
$$\leq \frac{(|c|H)^{p-1}}{(p-1)!} (2|c|H)^{ps} H e^H$$

vu que $|\alpha_j(1-x)| \leq |\alpha_j| \leq H$.

b. On a donc $\left|\sum_{j=1}^{s} R(\alpha_j)\right| \leq \frac{sHe^H}{|c|H(p-1)!}[|c|H(2|c|H)^s]^p = K\frac{A^p}{(p-1)!}$ et comme ce dernier majorant tend vers 0 quand p tend vers l'infini, comme au **II**, il existe p_0 tel que

$$p \geqslant p_0 \Rightarrow \left| \sum_{j=1}^s R(\alpha_j) \right| < 1.$$

c. Comme au II, les inégalités obtenues au III.5. et au III.6. sont incompatibles (compte tenu de la relation prouvée au III.4.) donc on peut conclure

 π est bien transcendant.