SPÉCIALE MP* : DEVOIR LIBRE

Ce problème constitue une introduction très rapide aux bases de la méthode de décomposition en fréquences de Littlewood-Paley. Notons que cette méthode est très fortement utilisée par exemple dans l'étude de la propagation de singularités au sein d'équations aux dérivées partielles variées : équation de Navier-Stokes en mécanique des fluides, équations de Boltzman dans la dynamique des gaz etc. Nous commençons par l'introduction des fonctions de découpage en fréquences ψ_n dont nous donnerons quelques propriétés. Nous utiliserons, par la suite, ces fonctions de découpage en fréquence pour présenter des approximations de fonctions continues 2π -périodiques sur \mathbb{R} . Nous obtiendrons, entre autres, une estimation d'erreur en norme infinie entre la fonction et sa troncature sur les N premières fonctions de base.

Le symbole $\sum_{n\in\mathbb{Z}}u_n$ représente $\sum_{n=0}^{+\infty}u_n+\sum_{n=1}^{+\infty}u_{-n}$, la convergence de $\sum_{n\in\mathbb{Z}}u_n$ signifiant la convergence de chacune des 2 séries $\sum u_n$ et $\sum u_{-n}$.

Les notations définies dans une question ou en préambule d'une partie sont conservées pour les questions suivantes.

Première partie, construction d'une fonction de découpage

- **I.1.** Soit $\chi(x) = 0$ si $x \le 0$ et $\chi(x) = e^{-1/x}$ si x > 0. Montrer que χ est de classe \mathcal{C}^{∞} sur \mathbb{R} .
- **I.2.** En déduire l'existence d'une fonction θ de classe \mathcal{C}^{∞} sur \mathbb{R} telle que

$$\forall x \in]\frac{1}{2}, 2[, \ \theta(x) > 0 \text{ et } \forall x \notin]\frac{1}{2}, 2[, \ \theta(x) = 0.$$

I.3. Montrer que l'on peut définir une fonction Φ sur $]0, +\infty[$ par

$$\Phi(x) = \sum_{j \in \mathbb{Z}} \theta(2^{-j}x),$$

que Φ est de classe \mathcal{C}^{∞} sur $]0, +\infty[$ et que $\forall x > 0, \Phi(x) > 0.$

I.4. On pose $\forall x \neq 0$, $\varphi(x) = \frac{\theta(|x|)}{\Phi(|x|)}$ et $\varphi(0) = 0$.

Montrer que la fonction φ à les propriétés suivantes :

- (i) φ est de classe \mathcal{C}^{∞} sur \mathbb{R} .
- (ii) $\varphi(x) > 0 \text{ si } 1/2 < |x| < 2 \text{ et } \varphi(x) = 0 \text{ sinon.}$
- (iii) $\forall x \in \mathbb{R}, \sum_{i=0}^{+\infty} \varphi(2^{-j}x) \leq 1$, l'égalité ayant lieu pour $|x| \geq 1$.

DEUXIÈME PARTIE, QUELQUES PROPRIÉTÉS

On note E l'espace des fonctions continues 2π -périodiques sur \mathbb{R} , à valeurs complexes, et, pour $f \in E$ et $n \in \mathbb{Z}$, on pose

$$\widehat{f}(n) = \frac{1}{2\pi} \int_0^{2\pi} f(x)e^{-inx} dx.$$

II.1. Soit φ la fonction définie en I.4. On pose, pour tout $\xi \in \mathbb{R}$,

$$\psi(\xi) = \int_{-\infty}^{+\infty} \varphi(x)e^{ix\xi} \, \mathrm{d}x.$$

Montrer que $|\psi(\xi) - \psi(\xi')| \le 2|\xi - \xi'| \int_{-\infty}^{+\infty} |\varphi(x)| dx$ (ψ est donc continue sur \mathbb{R}).

Exprimer $\xi^3 \psi(\xi)$ sous forme d'une intégrale, en déduire que $\int_{-\infty}^{+\infty} |\xi| . |\psi(\xi)| d\xi$ est convergente.

II.2. Soit N > 0 et $t \in \mathbb{R}$. On définit, pour $x \in \mathbb{R}$,

$$L(x) = \sum_{k \in \mathbb{Z}} \varphi\left(\frac{(2\pi)^{-1}x + k}{N}\right) \exp\left[i((2\pi)^{-1}x + k)t\right].$$

- a. Montrer que L est une fonction de classe \mathcal{C}^{∞} et 2π -périodique sur \mathbb{R} .
- **b.** Exprimer, pour $n \in \mathbb{Z}$, $\widehat{L}(n)$ au moyen de la fonction ψ .
- c. En déduire

$$\sum_{k \in \mathbb{Z}} \varphi\left(\frac{k}{N}\right) e^{ikt} = N \sum_{k \in \mathbb{Z}} \psi[N(t + 2\pi k)].$$

Pour la suite du problème on pose, pour $n \in \mathbb{N}$ et $t \in \mathbb{R}$,

$$\psi_n(t) = \sum_{k \in \mathbb{Z}} \varphi(2^{-n}k) e^{ikt}.$$

II.3. Soit $h \in E$ tel qu'il existe α , $0 < \alpha \le 1$, et $M \ge 0$ avec $\forall t \in \mathbb{R}$, $|h(t)| \le M|t|^{\alpha}$. Montrer que, pour $n \in \mathbb{N}$,

$$\int_{0}^{2\pi} |h(t)| |\psi_n(t)| \, \mathrm{d}t \leq M 2^{-\alpha n} \int_{-\infty}^{+\infty} |\xi|^{\alpha} |\psi(\xi)| \, \mathrm{d}\xi.$$

Troisième partie, convergence en norme dans L^2

On définit les normes $\|.\|_2$ et $\|.\|_{\infty}$ sur E par

$$||f||_2 = \left(\frac{1}{2\pi} \int_0^{2\pi} |f(t)|^2 dt\right)^{1/2} \text{ et } ||f||_\infty = \sup_{x \in [0, 2\pi]} |f(x)|.$$

Si $f, g \in E$ on note

$$f * g(x) = \frac{1}{2\pi} \int_0^{2\pi} f(t)g(x-t) dt.$$

Pour $N \in \mathbb{N}$, on désigne par E_N le sous-espace de E engendré par les fonctions e_k avec $k \in \mathbb{Z}$ et $|k| \leq N$, où, pour $k \in \mathbb{Z}$, on pose $e_k(x) = e^{ikx}$.

- **III.1.** Montrer que, si $f, g \in E$, f * g = g * f.
- III.2. Soit $f \in E$ et $n \in \mathbb{N}$. Exprimer $f * \psi_n$ en fonction des coefficients $\widehat{f}(k)$ et montrer que $f * \psi_n \in E_{2^{n+1}-1}$.
- **III.3.** Si $f \in E$ et $r \in \mathbb{N}$, on pose

$$f_r = \widehat{f}(0) + \sum_{n=0}^r f * \psi_n.$$

- **a.** Montrer que $\forall f \in E, \forall k \in \mathbb{Z}, |\widehat{f_r}(k)| \leq |\widehat{f}(k)|$. En déduire que $\forall f \in E, ||f_r||_2 \leq ||f||_2$.
- **b.** Montrer que, si $N \in \mathbb{N}$, $r \in \mathbb{N}$ et $2^r \geqslant N$, $\forall f \in E_N$, $f_r = f$.
- **c.** Montrer que, pour tout $f \in E$, $\lim_{r \to +\infty} ||f_r f||_2 = 0$.

(On pourra faire intervenir les sommes partielles $S_N f$ de la série de Fourier de f.)

Quatrième partie, contrôle en norme dans L^{∞}

Pour $0<\alpha\leqslant 1,\,\Lambda^\alpha$ désigne le sous-espace de E constitué des fonctions f définies sur $\mathbb R$ pour lesquelles

$$||f||_{\alpha} = \sup_{x \neq y} \frac{|f(x) - f(y)|}{|x - y|^{\alpha}} < +\infty$$

On suppose dans la suite α fixé, $0 < \alpha \le 1$.

IV.1. Montrer qu'il existe un réel H>0 tel que

$$\forall f \in \Lambda^{\alpha}, \ \forall n \in \mathbb{N}, \ \|f * \psi_n\|_{\infty} \leq H \|f\|_{\alpha} 2^{-\alpha n}.$$

En déduire que, si $f \in \Lambda^{\alpha}$, f_r converge uniformément vers f quand r tend vers $+\infty$.

IV.2. Établir que

$$\forall f \in \Lambda^{\alpha}, \ \forall r \in \mathbb{N}, \ \|f_r - f\|_{\infty} \leqslant H \|f\|_{\alpha} \frac{2^{-\alpha(r+1)}}{1 - 2^{-\alpha}}$$

et en déduire qu'il existe un réel C>0 tel que

$$\forall f \in \Lambda^{\alpha}, \ \forall N \in \mathbb{N}^*, \ d(f, E_N) \leqslant C \|f\|_{\alpha} N^{-\alpha}$$

où $d(f, E_N)$ désigne $\inf_{g \in E_N} ||f - g||_{\infty}$.