I. Quelques résultats généraux

I.A -

1. L'équation étant linéaire (et ses coefficients des fonctions continues définies sur \mathbb{R}), le théorème de Cauchy-Lipschitz s'énonce :

Pour tout $u, v \in \mathbb{R}$, il existe une unique solution y définie sur \mathbb{R} vérifiant y(0) = u et y'(0) = v. Soit maintenant y une solution vérifiant y(0) = 0. Posons z(x) = y(-x). Alors z''(x) = y''(-x) et, par parité de q:

$$z''(x) + (\lambda - q(x))z(x) = y''(-x) + (\lambda - q(-x))y(-x) = 0$$

Donc z est solution de (E_{λ}) et, puisque $z(0)=0=y(0),\ z'(0)=-y'(0)$, l'unicité dans le théorème de Cauchy-Lipschitz atteste de l'égalité z=-y, c'est-à-dire que y est impaire. La réciproque est évidente.

2. Soient y et z deux solutions. Leur wronskien vaut $W(x) = \begin{vmatrix} y & z \\ y' & z' \end{vmatrix} = yz' - y'z$. Si y et z sont toutes deux paires, on a y'0) = z'(0) = 0. Si elles sont toutes deux impaires, y(0) = z(0) = 0. Dans les deux cas, W(0) = 0, ce qui prouve que (y, z) n'est pas une base de solutions. Soit alors λ une valeur propre de Q. L'espace propre correspondant est égal à $E_2 \cap S_{E_\lambda}$ (où S_{E_λ} est l'espace des solutions de E_λ). Il est non réduit à $\{0\}$ par définition. On sait de plus que $\dim S_{E_\lambda} = 2$ et on vient de voir que S_{E_λ} ne peut être contenu dans E_2 . Donc $\dim(E_2 \cap S_{E_\lambda}) = 1$.

I.B -

1. Pour tout $\lambda \in \mathbb{R}$, l'équation $y'' + (\lambda - a)y = 0$ admet une droite de solutions impaires, dont une base est $x \mapsto \sinh(\sqrt{a-\lambda}\,x)$ si $\lambda < a, \ x \mapsto x$ si $\lambda = a$ et $x \mapsto \sin(\sqrt{\lambda-a}\,x)$ si $\lambda > a$. Les deux premiers types d'application ne sauraient être périodiques, car non bornées. Toute valeur propre vérifie donc $\lambda > a$. En outre, l'application $x \mapsto \sin(\sqrt{\lambda-a}\,x)$ admet $\frac{2\pi}{\sqrt{\lambda-a}}$ pour plus petite période strictement positive. Elle est donc 2π -périodique si et seulement si $\sqrt{\lambda-a} \in \mathbb{N}^*$. Le même raisonnement est valable à propos de l'opérateur B. Ainsi :

Le spectre de A est $\{a+k^2, k \in \mathbb{N}^*\}$ et un vecteur propre unitaire associé à $a+k^2$ est s_k . Le spectre de B est $\{b+k^2, k \in \mathbb{N}^*\}$ et un vecteur propre unitaire associé à $b+k^2$ est s_k .

2. On a:

$$f|A(f) = f|(-f'' + af) = -f|f'' + \frac{1}{\pi} \int_0^{2\pi} af^2 \leqslant -f|f'' + \frac{1}{\pi} \int_0^{2\pi} qf^2 = f|Q(f)|^{2\pi}$$

De la même façon, $f|Q(f) \leq f|B(f)$.

II. Problème approché de dimension finie

II.A -

1. Dans un espace vectoriel préhilbertien, tout sous-espace de dimension finie admet un supplémentaire orthogonal. Ceci justifie l'existence de Π_n , et le cours nous apprend que $\Pi_n(f)$ est égal

à la $n^{\mathrm{i\`{e}me}}$ somme partielle de la série de Fourier de f, c'est-à-dire, en tenant compte de l'imparité de f :

$$\Pi_n(f) = \sum_{k=1}^n b_n(f) s_n$$

Enfin on a, toujours d'après le cours : $\lim_{n\to+\infty} \|\Pi_n(f)\|_2 = \|f\|_2$ et $\lim_{n\to+\infty} \|f-\Pi_n(f)\|_2 = 0$.

- 2. L'endomorphisme Π_n est un projecteur orthogonal de E, donc un endomorphisme symétrique (dans le détail : $f|\Pi_n(g) = (\Pi_n(f) + (f \Pi_n(f)))|\Pi_n(g) = \Pi_n(f)|\Pi_n(g) = \Pi_n(f)|(\Pi_n(g) + (g \Pi_n(g))) = \Pi_n(f)|g)$.
- 3. Deux intégrations par parties successives donnent :

$$f|Q(g) = \frac{1}{\pi} \int_0^{2\pi} f(-g'' + qg)$$

$$= \frac{1}{\pi} \left([-fg']_0^{2\pi} + \int_0^{2\pi} f'g' + \int_0^{2\pi} qfg \right)$$

$$= \frac{1}{\pi} \left([f'g]_0^{2\pi} - \int_0^{2\pi} f''g' + \int_0^{2\pi} qfg \right)$$

$$= \frac{1}{\pi} \int_0^{2\pi} (-f'' + qf)g = Q(f)|g$$

Donc, pour tous $f,g\in V_n$ (en utilisant $\Pi_n(f)=f$ et $\Pi_n(g)=g$) :

$$f|Q_n(g) = f|\Pi_n \circ Q(g) = \Pi_n(f)|Q(g) = f|Q(g) = Q(f)|g = Q(f)|\Pi_n(g) = \Pi_n \circ Q(f)|g = Q_n(f)|g =$$

II.B -

- 1. On a, pour $f \in V_n$: $f|A_n(f) = f|\Pi_n \circ A(f) = \Pi_n(f)|A(f) = f|A(f)$ et, de la même façon, $f|Q_n(f) = f|Q(f)$, $f|B_n(f) = f|B(f)$. Les inégalités demandées résultent donc immédiatement de **I.B.2**).
- 2. (a) L'espace V_n est stable par dérivation, donc stable par A et, pour $f \in V_n$, $A_n(f) = A(f)$. Les valeurs propres de A_n sont donc les valeurs propres de A pour lesquelles on trouve un vecteur propre dans V_n , c'est-à-dire, d'après **I.B.1**), les $a + k^2$, $1 \le k \le n$. De même, les valeurs propres de B_n sont les $a + k^2$, $1 \le k \le n$.
 - (b) Puisque $\dim(V_k) = k$ et $\dim(\operatorname{Vect}(e_{k,n}, \dots, e_{n,n}) = n k + 1$, ces deux sous-espaces de V_n (qui est de dimension n) ne sauraient être en somme directe. Leur intersection contient donc un élément non nul f, qu'on peut choisir de norme 1.

Posons $f=\sum_{j=1}^k c_j s_j$. On a $f|B(f)=\sum_{j=1}^k (b+j^2)c_j^2\leqslant (b+k^2)\sum_{j=1}^k c_j^2=b+k^2$. De la même façon, en décomposant f sur les $e_{k,n},\ldots,e_{n,n}$, il vient $f|Q(f)\geqslant \lambda_{k,n}$ puis, en utilisant **I.B.2)**:

$$\lambda_{k,n} \leqslant f|Q(f) \leqslant f|B(f) \leqslant k^2 + b$$

L'inégalité $k^2 + a \leq \lambda_{k,n}$ se prouve de la même façon, en prenant en considération les sous-espaces $\mathrm{Vect}(s_k,\ldots,s_n)$ et $\mathrm{Vect}(e_{1,n},\ldots,e_{k,n})$ de V_n .

(c) On a pour tout $f \in V_{n-1}$, $f|Q_n(f) = f|Q(f) = f|Q_{n-1}(f)$. Il vient, en considérant cette fois-ci les espaces $\mathrm{Vect}(e_{1,n-1},\ldots,e_{k,n-1})$ et $\mathrm{Vect}(e_{k,n},\ldots,e_{n,n})$ de V_n et un élément f de norme 1 de leur intersection :

$$\lambda_{k,n} \leqslant f|Q(f) = f|Q_{n-1}(f) \leqslant \lambda_{k,n-1}$$

II.C -

La suite $(\lambda_{k,n})_n$ est, d'après les question précédentes, une suite décroissante à valeurs dans le segment I_k . Elle converge donc vers un élément λ_k de I_k . De plus, puisque pour tout $n \geqslant k+1$, $\lambda_{k,n} \leqslant \lambda_{k+1,n}$, on a en passant à la limite quand $n \to +\infty$: $\lambda_k \leqslant \lambda_{k+1}$.

III - Une suite de valeurs propres de Q

III. A -

1. La fonction

$$\phi: \mathbb{R} \to \mathbb{R}^2$$

$$x \mapsto \left(\frac{1}{\sqrt{\lambda}}y_{\lambda}'(x), y_{\lambda}(x)\right)$$

est de classe C^1 et ne s'annule pas. Elle prend en outre la valeur (1,0) en x=0. Le théorème de relèvement assure l'existence de deux fonctions $r_{\lambda}: \mathbb{R} \to \mathbb{R}^*_+$ et $\theta_{\lambda}: \mathbb{R} \to \mathbb{R}$ de classe C^1 telles que $\theta_{\lambda}(0) = 0$ et, pour tout $x \in \mathbb{R}$, $\phi(x) = r_{\lambda}(x) \left((\cos(\theta_{\lambda}(x)), \sin(\theta_{\lambda}(x)) \right)$.

2. En dérivant les expressions $\frac{1}{\sqrt{\lambda}}y_{\lambda}'(x) = r_{\lambda}\cos(\theta_{\lambda})$ et $y_{\lambda}(x) = r_{\lambda}\sin(\theta_{\lambda})$, puis en utilisant les relations $y_{\lambda}'' = -(\lambda - q)y_{\lambda}$ et $y_{\lambda}' = \sqrt{\lambda}r_{\lambda}\cos(\theta_{\lambda})$, il vient :

$$\begin{cases} (1) & -\frac{1}{\sqrt{\lambda}}(\lambda - q)r_{\lambda}\sin(\theta_{\lambda}) = r'_{\lambda}\cos(\theta_{\lambda}) - r_{\lambda}\theta'_{\lambda}\sin(\theta_{\lambda}) \\ (2) & \sqrt{\lambda}r_{\lambda}\cos(\theta_{\lambda}) = r'_{\lambda}\sin(\theta_{\lambda}) + r_{\lambda}\theta'_{\lambda}\cos(\theta_{\lambda}) \end{cases}$$

Évaluant $-\sin(\theta_{\lambda}) \times (1) + \cos(\theta_{\lambda}) \times (2)$, on a :

$$\frac{1}{\sqrt{\lambda}}(\lambda - q)r_{\lambda}\sin^{2}(\theta_{\lambda}) + \sqrt{\lambda}r_{\lambda}\cos^{2}(\theta_{\lambda}) = r_{\lambda}\theta_{\lambda}'$$

d'où, puisque $r_{\lambda} > 0$:

$$\sqrt{\lambda} - \frac{q}{\sqrt{\lambda}}\sin^2(\theta_\lambda) = \theta_\lambda'$$

Comme $\theta_{\lambda}(0)=0$, θ_{λ} est bien la solution maximale de (T_{λ}) (qui est unique d'après le théorème de Cauchy-Lipschitz).

3. En évaluant $\cos(\theta_{\lambda}) \times (1) + \sin(\theta_{\lambda}) \times (2)$, on a cette fois :

$$\frac{q}{2\sqrt{\lambda}}r_{\lambda}\sin(2\theta_{\lambda}) = r_{\lambda}'$$

III. B -

1. Si l'on pose $u(t)=\theta(\lambda,t)-\sqrt{\lambda}t$, on a u(0)=0 et $u'(t)=\theta'_{\lambda}(t)-\sqrt{\lambda}=-\frac{q}{\sqrt{\lambda}}\sin^2(\theta_{\lambda})$ d'où $|u'(t)|\leqslant \frac{\|q\|_{\infty}}{\sqrt{\lambda}}$ et, par l'inégalité des accroissements finis, pour $t\geqslant 0$, $|u(t)|\leqslant \frac{\|q\|_{\infty}}{\sqrt{\lambda}}t$.

On en déduit $|2\theta(\lambda,t)-2\sqrt{\lambda}t| \leqslant \frac{2\|q\|_{\infty}}{\sqrt{\lambda}}t$ et, puisque cos est 1-lipschitzienne :

$$\left|\cos(2\theta(\lambda, t)) - \cos\left(2\sqrt{\lambda}t\right)\right| \leqslant \frac{2\|q\|_{\infty}}{\sqrt{\lambda}}t$$

2. On a

$$\theta(\lambda,t) = \int_0^{2\pi} \theta_{\lambda}'(t)dt$$

$$= \int_0^{2\pi} \left(\sqrt{\lambda} - \frac{q(t)}{2\sqrt{\lambda}}(1 - \cos(2\theta_{\lambda}(t)))\right)dt$$

$$= 2\pi\sqrt{\lambda} - \frac{1}{2\sqrt{\lambda}} \int_0^{2\pi} q(t)dt + \frac{1}{2\sqrt{\lambda}} \int_0^{2\pi} q(t)\cos(2\theta_{\lambda}(t))dt$$

$$= 2\pi\sqrt{\lambda} - \frac{1}{2\sqrt{\lambda}} \int_0^{2\pi} q(t)dt + \frac{1}{2\sqrt{\lambda}} \int_0^{2\pi} q(t)\cos(2\sqrt{\lambda(t)}t)dt$$

$$+ \frac{1}{2\sqrt{\lambda}} \int_0^{2\pi} q(t) \left(\cos(2\theta_{\lambda}(t)) - \cos(2\sqrt{\lambda(t)}t)\right)dt$$

et l'inégalité cherchée, pour $K = 2\pi^2 ||q||_{\infty}^2$, résulte de

$$\frac{1}{2\sqrt{\lambda}} \left| \int_{0}^{2\pi} q(t) \left(\cos(2\theta_{\lambda}(t)) - \cos(2\sqrt{\lambda(t)}t) \right) dt \right| \leqslant \frac{1}{2\sqrt{\lambda}} \int_{0}^{2\pi} |q(t)| \left| \cos(2\theta_{\lambda}(t)) - \cos(2\sqrt{\lambda(t)}t) \right| dt \\
\leqslant \frac{1}{2\sqrt{\lambda}} \int_{0}^{2\pi} \frac{2\|q\|_{\infty}|q(t)|}{\sqrt{\lambda}} t dt \\
\leqslant \frac{2\pi^{2}\|q\|_{\infty}^{2}}{\lambda}$$

3. Puisque q est continue, le lemme de Lebesgue permet d'affirmer :

$$\lim_{\lambda \to +\infty} \int_0^{2\pi} q(t) \cos(2\sqrt{\lambda}t) dt = 0$$

Donc

$$\theta(\lambda, 2\pi) = 2\pi\sqrt{\lambda} - \frac{1}{2\sqrt{\lambda}} \int_0^{2\pi} q(t)dt + o\left(\frac{1}{\sqrt{\lambda}}\right) = 2\pi\sqrt{\lambda} \left[1 - \frac{1}{4\pi\lambda} \int_0^{2\pi} q(t)dt + o\left(\frac{1}{\lambda}\right)\right]$$

- 4. La relation précédente montre immédiatement $\lim_{\lambda \to +\infty} \theta(\lambda, 2\pi) = +\infty$. On peut donc, par le théorème des valeurs intermédiaires, choisir $k_0 \in \mathbb{N}^*$ tel que $2k_0\pi$ appartienne à l'image de $]0, +\infty[$ par $\lambda \mapsto \theta(\lambda, 2\pi)$. Soit $\mu_{k_0} > 0$ tel que $\theta(\mu_{k_0}, 2\pi) = 2k_0\pi$. Le théorème des valeurs intermédiaires à nouveau assure de l'existence de $\mu_{k_0+1} > \mu_{k_0}$ tel que $\theta(\mu_{k_0+1}, 2\pi) = 2(k_0+1)\pi$, puis de $\mu_{k_0+2} > \mu_{k_0+1}$ tel que $\theta(\mu_{k_0+2}, 2\pi) = 2(k_0+2)\pi$, etc. On construit ainsi la suite $(\mu_k)_{k\geqslant k_0}$ par récurrence.
- 5. La suite $(\mu_k)_k$, si elle était majorée, serait convergente et la suite $\theta(\mu_k, 2\pi) = 2k\pi$ convergerait aussi, ce qui n'est pas. Donc $\lim_{k \to +\infty} \mu_k = +\infty$. La relation prouvée en **III.B.3**) montre alors, quand $k \to +\infty$,

$$2k\pi = 2\pi\sqrt{\mu_k} \left[1 - \frac{1}{4\pi\mu_k} \int_0^{2\pi} q(t)dt + o\left(\frac{1}{\mu_k}\right) \right]$$

ďoù

$$4k^{2}\pi^{2} = 4\pi^{2}\mu_{k} \left[1 - \frac{1}{2\pi\mu_{k}} \int_{0}^{2\pi} q(t)dt + o\left(\frac{1}{\mu_{k}}\right) \right]$$

puis

$$\mu_k - k^2 = \frac{1}{2\pi} \int_0^{2\pi} q(t)dt + o(1)$$

III. C -

1. Puisque q est paire et 2π -périodique, les fonctions $x \mapsto -\theta_{\lambda}(-x)$ et $x \mapsto \theta_{\lambda}(x+2\pi) - 2k\pi$ sont solution du problème de Cauchy (T_{λ}) . Par unicité de la solution à ce problème on a, pour tout $x \in \mathbb{R}$:

$$\theta_{\lambda}(x) = -\theta_{\lambda}(-x)$$
 et $\theta_{\lambda}(x+2\pi) - 2k\pi = \theta_{\lambda}(x)$

2. Par 2π -périodicité de u, $\int_x^{x+2\pi} u(t)dt$ est indépendant de x, donc égal à $\int_{-\pi}^{\pi} u(t)dt$ qui est nul par imparité de u. Ceci prouve que $x\mapsto \int_0^x u(t)dt$ est 2π -périodique. On voit aussi immédiatement que c'est une fonction paire. Or, d'après **III.A.3**), on a :

$$r_{\lambda}(x) = r_{\lambda}(0) \exp\left(\int_{0}^{x} \frac{q(t)}{2\sqrt{\lambda}} \sin(2\theta_{\lambda}(t))dt\right)$$

Comme $t\mapsto q(t)\sin(2\theta_{\lambda}(t))$ est impaire et 2π -périodique (par III.C.1)), r_{λ} est 2π -périodique et paire.

- 3. Il résulte de ceci que $y_{\lambda} = r_{\lambda} \sin \theta_{\lambda}$ est 2π -périodique et impaire. Par conséquent, Q admet λ pour valeur propre.
- 4. Ce qui précède montre que la suite (μ_k) est une suite croissante de valeurs propres de Q.

IV. Valeurs propres de Q

IV.A -

- 1. (a) Il suffit de substituer à y_n la fonction $\pm \frac{y_n}{\|y_n\|_2}$.
 - (b) On a $Q_n(y_n)=\Pi_n(Q(y_n))=\Pi_n(-y_n''+qy_n)=-y_n''+\Pi_n(qy_n)$ car, V_n étant stable par dérivation, on a $y_n''\in V_n$.

Il vient
$$||Q(y_n) - \alpha_n y_n||_2 = ||Q(y_n) - Q_n(y_n)||_2 = ||-y_n'' + qy_n + y_n'' - \Pi_n(qy_n)||_2 = ||qy_n - \Pi_n(qy_n)||_2.$$

- (c) De $y_n = \sum_{m=1}^n b_m(y_n) s_m$, on déduit $qy_n \Pi_n(qy_n) = \sum_{m=1}^n b_m(y_n) qs_m \sum_{m=1}^n b_m(y_n) \Pi_n(qs_m) = \sum_{m=1}^n b_m(y_n) [qs_m \Pi_n(qs_m)].$
- (d) $\|Q(y_n) \alpha_n y_n\|_2 = \|qy_n \Pi_n(qy_n)\|_2 = \left\|\sum_{m=1}^n b_m(y_n)[qs_m \Pi_n(qs_m)]\right\|_2$ $\leqslant \sum_{m=1}^n |b_m(y_n)| \|[qs_m - \Pi_n(qs_m)]\|_2 \leqslant \sum_{m=1}^n |b_m(y_n)| r_{m,n}.$ On a par ailleurs, par Pythagore,

$$r_{m,n}^{2} = \|qs_{m}\|_{2}^{2} - \|\Pi_{n}(qs_{m})\|_{2}^{2}$$

$$\leq \|qs_{m}\|_{2}^{2} = \frac{1}{\pi} \int_{0}^{2\pi} q(t)^{2} s_{m}^{2}(t) dt \leq \frac{1}{\pi} \int_{0}^{2\pi} q(t)^{2} dt = \|q\|_{2}^{2}$$

(e) L'équation $Q_n(y_n)=\alpha_n y_n$ entraı̂ne, pour tout $m\in\mathbb{N}^*$, $b_m(-y_n''+qy_n-\alpha_n y_n)=0$. Par ailleurs, deux intégrations par parties successives donnent la relation classique $b_m(y_n'')=-m^2b_m(y_n)$. Donc $m^2b_m(y_n)+b_m(qy_n)-\alpha_n b_m(y_n)=0$.

(f) L'inégalité de Cauchy-Schwarz indique

$$|b_m(y_n)| = |(y_n|s_m)| \le ||y_n||_2 ||s_m||_2 = 1$$

Par ailleurs,

$$|b_m(qy_n)| = |(qy_n|s_m)| \leqslant \frac{1}{\pi} \int_0^{2\pi} |qy_n s_m|$$

$$\leqslant \frac{1}{\pi} \int_0^{2\pi} |qy_n| \leqslant \frac{1}{\pi} \left(\int_0^{2\pi} q^2 \right)^{1/2} \left(\int_0^{2\pi} y_n^2 \right)^{1/2}$$

$$\leqslant ||q||_2 ||y_n||_2 \leqslant ||q||_2$$

Donc

$$|m^{2}|b_{m}(y_{n})| = |b_{m}(qy_{n}) - \alpha_{n}b_{m}(y_{n})| \leq |b_{m}(qy_{n})| + |\alpha_{n}||b_{m}(y_{n})| \leq ||q||_{2} + |\alpha_{n}| \leq C$$

(g) On a $|b_m(y_n)|r_{m,n}\leqslant \frac{C\|q\|_2}{m^2}$ pour $n\geqslant m$ d'après ce qui précède, et cette inégalité est encore valable pour n< m puisque, dans ce cas, $y_n\in V_n$ et $b_m(y_n)=0$. De plus, $\lim_{n\to+\infty}r_{m,n}=0$ d'après la définition de $r_{m,n}$ et II.A.1). Comme $|b_m(y_n)|=|(y_n|s_m)|\leqslant \|y_n\|_2\|s_m\|_2=1$, on a aussi $\lim_{n\to+\infty}|b_{m,n}|r_{m,n}=0$.

On déduit donc du résultat admis dans le préliminaire $\lim_{n\to+\infty}\sum_{m=1}^n|b_m(y_n)|r_{m,n}=0$ puis, avec la première inégalité de **d**), $\lim_{n\to+\infty}\|Q(y_n)-\alpha_ny_n\|_2=0$.

- 2. (a) $||z_n||_2 = ||Q(y_n) \alpha_n y_n + (\alpha_n \alpha) y_n||_2 \le ||Q(y_n) \alpha_n y_n||_2 + |\alpha_n \alpha||y_n||_2 \underset{n \to +\infty}{\longrightarrow} 0.$
 - (b) Posons $W(x) = \begin{vmatrix} u & v \\ u' & v' \end{vmatrix}$. Alors

$$W'(x) = \begin{vmatrix} u' & v' \\ u' & v' \end{vmatrix} + \begin{vmatrix} u & v \\ u'' & v'' \end{vmatrix} = \begin{vmatrix} u & v \\ -(\alpha - q)u & -(\alpha - q)v \end{vmatrix} = 0$$

Donc W est constant, égal à W(0) = 1.

(c) On a $y_n'' + (\alpha - q)y_n = -z_n$. On peut donc regarder y_n comme solution de l'équation différentielle $y'' + (\alpha - q)y = -z_n$. À ce titre, la méthode de la variation des constantes nous assure de l'existence de deux fonctions ϕ et ψ de classe C^1 pour lesquelles $y_n = \phi u + \psi v$ et :

$$\begin{cases} \phi' u + \psi' v = 0 \\ \phi' u' + \psi' v' = -z_n \end{cases}$$

Il vient, puisque le wronskien vaut 1, $\phi'=\begin{vmatrix} 0 & v \\ -z_n & v' \end{vmatrix}=z_nv$ et $\psi'=\begin{vmatrix} u & 0 \\ u' & -z_n \end{vmatrix}=-z_nu$. D'où, en utilisant les condition initiales u(0)=1, u'(0)=0, v(0)=0, v'(0)=1:

$$y_n(x) = y_n(0)u + y'_n(0)v + \left(\int_0^x z_n(t)v(t)dt\right)u(x) - \left(\int_0^x z_n(t)u(t)dt\right)v(x)$$

= $y'_n(0)v(x) + \int_0^x K(x,t)z_n(t)dt$

où K(x,t) = u(x)v(t) - u(t)v(x) (K est bien continue).

(d) L'inégalité de Cauchy-Schwarz donne :

$$|f_n(x)| \le \left| \int_0^x K(x,t)^2 dt \right|^{1/2} \left| \int_0^x z_n(t)^2 dt \right|^{1/2}$$

Soit J un segment de \mathbb{R} . Il existe $m \in \mathbb{N}^*$ tel que $J \subset [-2m\pi, 2m\pi]$. Puisque z_n est 2π -périodique, on a, pour $x \in [-2m\pi, 2m\pi]$, $\left|\int_0^x z_n(t)^2 dt\right| \leqslant m \int_0^{2\pi} z_n(t)^2 dt \leqslant m\pi \|z_n\|_2^2$. Si on pose (continuité de K) $M = \sup_{[-2m\pi, 2m\pi]^2} |K|$, il vient : $\forall x \in J$,

$$|f_n(x)| \le \sqrt{2m\pi M^2} \sqrt{m\pi \|z_n\|_2^2} \le \sqrt{2}\pi m M \|z_n\|_2$$

Donc $(f_n)_n$ tend uniformément vers 0 sur tout segment de \mathbb{R} .

- (e) On a $\int_0^{2\pi} (y_n(x)-y_n'(0)v(x))^2 dx = \int_0^{2\pi} f_n(x)^2 dx$. Or $(f_n^2)_n$, carré d'une suite uniformément convergente vers 0 sur le segment $[0,2\pi]$, converge uniformément vers 0 sur $[0,2\pi]$ (car une suite de fonctions uniformément convergente sur un segment est bornée pour $\|.\|_\infty$). Donc $\lim_{n\to+\infty}\int_0^{2\pi} (y_n(x)-y_n'(0)v(x))^2 dx = 0$. Ainsi on a $\lim_{n\to+\infty}\|y_n-y_n'(0)v\|_2 = 0$, d'où $\lim_{n\to+\infty}\|y_n'(0)v\|_2 \|y_n\|_2\| = 0$ et, puisque $y_n'(0)\geqslant 0$, $\lim_{n\to+\infty}y_n'(0) = \frac{1}{\|v\|_2}$.
- (f) La relation $y_n(x)=y_n'(0)v(x)+f_n(x)$ et ce qui précède montre que y_n converge uniformément sur tout compact vers $\frac{v}{\|v\|_2}$. On en déduit que v est 2π -périodique et impaire et est, par conséquent, vecteur propre de Q pour la valeur propre α .

IV.B -

- 1. Soient $k, j \in \mathbb{N}^*$. Pour tout $n \geqslant \max(k, j)$, on a $e_{k,n}|e_{j,n} = \delta_{k,j}$. On sait de plus que le produit scalaire $(f,g) \mapsto f|g$ de $E \times E$ dans \mathbb{R} est continu pour $\|.\|_2$. Comme $(e_{k,n})_n$ et $(e_{j,n})_n$ convergent vers e_k et e_j pour $\|.\|_{\infty,[0,2\pi]}$, donc a fortiori pour $\|.\|_2$, on a $\lim_{n \to +\infty} e_{k,n}|e_{j,n} = e_k|e_j$. Donc $e_k|e_j = \delta_{k,j}$. En particulier, e_k et e_j ne sont pas colinéaires pour $j \neq k$ et $\lambda_j \neq \lambda_k$ (car les espaces propres de Q sont de dimension 1). La suite $(\lambda_k)_k$ qu'on sait croissante est donc strictement croissante.
- 2. (a) On a $-e_{k,n}'' + (q \lambda_{k,n})e_{k,n} = 0$ donc $b_m(e_{k,n}'' + (q \lambda_{k,n})e_{k,n}) = 0$ puis $m^2b_m(e_{k,n}) + b_m(qe_{k,n}) \lambda_{k,n}b_m(e_{k,n}) = 0$ et $(\lambda_{k,n} m^2)b_m(e_{k,n}) = b_m(qe_{k,n})$. Or on a $m^2 < k^2 + a < \lambda_{k,n}$ donc $0 < k^2 + a m^2 \leqslant \lambda_{k,n} m^2$.

D'autre part, $|b_m(qe_{k,n})| = |(qe_{k,n}|s_m)| \le |(q|e_{k,n})| ||s_m||_{\infty} \le ||q||_2 ||e_{k,n}||_2 ||s_m||_2 \le ||q||_2$. Il vient

$$|(e_{k,n}|s_m)| = |b_m(e_{k,n})| \le \frac{|b_m(qe_{k,n})|}{k^2 + a - m^2} \le \frac{||q||_2}{k^2 + a - m^2}$$

(b) Fixons $m \in \mathbb{N}^*$, puis $K \in \mathbb{N}^*$ tel que $K^2 + a > m^2$. Posons, pour $n \geqslant \max(K, m)$, et $K \leqslant k \leqslant n$, $x_{k,n} = (e_{k,n}|s_m)^2$ et $\xi_k = \left(\frac{\|q\|_2}{k^2 + a - m^2}\right)^2$, de sorte que $|x_{k,n}| \leqslant \xi_k$.

On a $\lim_{n \to +\infty} (e_{k,n}|s_m) = (e_k|s_m)$ par continuité du produit scalaire relativement à $\|.\|_{\infty}$.

Comme la série $\sum_{k=K}^{\infty} \xi_k$ converge, on peut utiliser le résultat admis en préliminaire et conclure :

$$\lim_{n \to +\infty} \sum_{k=K}^{n} (e_{k,n}|s_m)^2 = \sum_{k=K}^{\infty} (e_k|s_m)^2$$

Or, de manière évidente, $\lim_{n\to+\infty}\sum_{k=1}^{K-1}(e_{k,n}|s_m)^2=\sum_{k=1}^{K-1}(e_k|s_m)^2$. Il vient

$$\lim_{n \to +\infty} \sum_{k=1}^{n} (e_{k,n}|s_m)^2 = \sum_{k=1}^{\infty} (e_k|s_m)^2$$

Et, $(e_{k,n})_{1 \le k \le n}$ étant une base orthonormée de V_n auquel appartient s_m , on a, pour tout n comme ci-dessus, $\sum_{k=1}^{n} (e_{k,n}|s_m)^2 = \|s_m\|^2$. On conclut

$$\sum_{k=1}^{\infty} (e_k | s_m)^2 = ||s_m||^2 = 1$$

Enfin, de

$$\left\| s_m - \sum_{k=1}^n (e_k | s_m) e_k \right\|_2^2 = \|s_m\|_2^2 + \sum_{k=1}^n (e_k | s_m)^2 - 2 \sum_{k=1}^n (e_k | s_m) (s_m | e_k)$$
$$= \|s_m\|_2^2 - \sum_{k=1}^n (e_k | s_m)^2$$

on déduit
$$\lim_{n\to+\infty} \left\| s_m - \sum_{k=1}^n (e_k|s_m)e_k \right\|_2 = 0.$$

3. Soit $f \in E$ orthogonale à tous les e_k . On a (la seconde égalité provient de la continuité du produit scalaire) :

$$f|s_m = \lim_{n \to +\infty} f\Big| \sum_{k=1}^{\infty} (e_k|s_m)e_k = \lim_{n \to +\infty} \sum_{k=1}^{\infty} (e_k|s_m)(f|e_k) = 0$$

Tous les coefficients de Fourier de f sont nuls ce qui, on le sait (f étant continue), entraı̂ne f=0.

4. Si λ est une valeur propre de Q distincte de chaque λ_k , et e un vecteur propre associé à λ , alors e est orthogonal à tous les e_k (car les espaces propres de Q sont deux à deux orthogonaux en raison de la relation de symétrie Q(f)|g=f|Q(g)). Donc e=0 ce qui est absurde.

V. Comportement asymptotique

V.A -

- 1. De $a\leqslant q\leqslant b$, on déduit immédiatement $a\leqslant \frac{1}{2\pi}\int_0^{2\pi}q(t)dt\leqslant b$. Si par exemple on avait $\frac{1}{2\pi}\int_0^{2\pi}q(t)dt=b$ alors on aurait $\frac{1}{2\pi}\int_0^{2\pi}(b-q(t))dt=0$ ce qui, par continuité de q et positivité de b-q, conduirait à $\forall t,\ q(t)=b$. Comme q n'est pas constante, c'est une contradiction.
- 2. (a) On a $\lim_{k\to+\infty}(k+1)^2-k^2=+\infty$. Donc il existe $k_1\geqslant k_0$ tel que $k\geqslant k_1$ entraı̂ne $k^2+b<(k+1)^2+a$, puis $I_k\cap I_{k+1}=\emptyset$.
 - (b) On sait que $\lim_{k\to +\infty}\mu_k-k^2=\frac{1}{2\pi}\int_0^{2\pi}q(t)dt\in]a,b[$. Donc $\mu_k\in [k^2+a,k^2+b]$ dès que k est assez grand. Ainsi il existe k_2 tel que μ_k soit une valeur propre de Q qui appartient à I_k dès que $k\geqslant k_2$.

Or les valeurs propres de Q sont exactement les λ_k et $\lambda_k \in I_k$. Comme $I_k \cap I_{k+1} = \emptyset$ pour $k \geqslant k_1$, I_k ne contient, pour $k \geqslant k_1+1$, qu'un unique élément de la suite $(\lambda_j)_j$, à savoir λ_k . Donc $k \geqslant \max(k_2,k_1+1) \implies \mu_k = \lambda_k$. Le comportement asymptotique découle immédiatement de **III.B.4.b**).