SPÉCIALE MP* : DEVOIR SURVEILLÉ

Soit n un entier naturel supérieur ou égal à 2; soit (e_1, e_2, \ldots, e_n) la base canonique de \mathbb{R}^n . \mathbb{R}^n est muni d'une structure d'espace vectoriel euclidien grâce au produit scalaire (x|y) défini par la relation

$$(x|y) = \sum_{i=1}^{n} x_i y_i = X^{\mathrm{T}} Y ;$$

x et y sont deux vecteurs de \mathbb{R}^n de coordonnées respectives $(x_i)_{i\in[1,n]}$ et $(y_i)_{i\in[1,n]}$; X et Y désignent les matrices colonnes associées aux vecteurs x et y.

Soit \mathbb{Z}^n le sous-ensemble des vecteurs de x de \mathbb{R}^n dont les coordonnées dans la base canonique sont toutes des entiers relatifs :

$$\mathbb{Z}^n = \{ x \mid x \in \mathbb{R}^n, \ x = (x_i)_{i \in [1,n]}, \ x_i \in \mathbb{Z} \}.$$

Par définition une "base" de l'ensemble \mathbb{Z}^n est une suite $(\varepsilon_1, \varepsilon_2, \dots, \varepsilon_n)$ de vecteurs tels que

- (i) La suite $(\varepsilon_1, \varepsilon_2, \dots, \varepsilon_n)$ est une base de \mathbb{R}^n .
- (ii) Chaque vecteur ε_i , $i \in [1, n]$ appartient à \mathbb{Z}^n .
- (iii) Tout vecteur x appartenant à \mathbb{Z}^n est une combinaison linéaire des vecteurs ε_i , $i \in [1, n]$:

$$x = \sum_{i=1}^{n} x_i \varepsilon_i$$

où les coefficients x_i , $i \in [1, n]$ sont des entiers relatifs.

Soit M une matrice appartenant à $\mathcal{M}(n;\mathbb{R})$, on note $M=(m_{ij})$ où i désigne la ligne et j la colonne. Le sous-ensemble des matrices réelles d'ordre n inversible est noté $\mathrm{GL}(n;\mathbb{R})$.

Soit $\mathcal{M}(n;\mathbb{Z})$ l'ensemble des matrices carrées d'ordre n dont les coefficients sont des entiers relatifs, on note $\mathrm{GL}(n;\mathbb{Z})$ le sous-ensemble des matrices inversibles de $\mathcal{M}(n;\mathbb{Z})$ dont l'inverse appartient à $\mathcal{M}(n;\mathbb{Z})$:

$$\operatorname{GL}(n;\mathbb{Z}) = \{ M \mid M \in \mathcal{M}(n;\mathbb{Z}) \cap \operatorname{GL}(n;\mathbb{R}) \text{ et } M^{-1} \in \mathcal{M}(n;\mathbb{Z}) \}.$$

Notation : soient A, B,... des matrices appartenant à $\mathcal{M}(n; \mathbb{R})$, les endomorphismes de \mathbb{R}^n associés à ces matrices dans la base canonique de \mathbb{R}^n sont notés a, b,...

Soit $S^+(n;\mathbb{R})$ l'ensemble des matrices symétriques $A \in \mathcal{M}(n;\mathbb{R})$ telles que la forme quadratique associée $q(x) = (x|a(x)) = X^T A X$ définisse un produit scalaire.

Le but du problème est d'établir, pour une matrice A de $S^+(n;\mathbb{R})$, une relation entre le minimum m(A) de la forme quadratique q(x) définie ci-dessus, lorsque x est un vecteur appartenant à \mathbb{Z}^n différent du vecteur nul (noté 0), et le déterminant de la matrice A. Cette relation est connue sous le nom de relation d'Hermite.

Première partie : construction d'une base de \mathbb{Z}^n

I.1. Déterminant d'une matrice de $GL(n; \mathbb{Z})$:

Soit M une matrice appartenant à $\mathcal{M}(n,\mathbb{Z})$; démontrer que, pour que cette matrice M appartienne à l'ensemble $\mathrm{GL}(n;\mathbb{Z})$, il faut et il suffit que det $M=\pm 1$.

I.2. Un résultat préliminaire :

Soit P l'application de $\mathbb{Z} \times \mathbb{Z}$ dans \mathbb{Z} qui, à deux entiers relatifs a et b associe l'entier P(a,b) égal :

- au P.G.C.D. de a et b s'ils sont tous les deux différents de 0,
- \bullet à l'entier relatif a ou b lorsque respectivement b ou a est nul i.e.

$$P(a,0) = a, P(0,b) = b, P(0,0) = 0.$$

Soit x un vecteur appartenant à \mathbb{Z}^2 de coordonnées a et b. Établir l'existence d'un endomorphisme v de \mathbb{R}^2 associé à une matrice V, appartenant à $\mathrm{GL}(2;\mathbb{Z})$, telle que l'image du vecteur x par l'endomorphisme v soit le vecteur de coordonnées (d,0) où d est l'entier P(a,b):

$$V \begin{pmatrix} a \\ b \end{pmatrix} = \begin{pmatrix} d \\ 0 \end{pmatrix}$$
, on posera $V = \begin{pmatrix} \alpha & \beta \\ \alpha' & \beta' \end{pmatrix}$.

I.3. Recherche de "base" dans \mathbb{Z}^n :

Soit $x = (x_i)_{i \in [1,n]}$ un vecteur de \mathbb{Z}^n , différent de 0, dont les coordonnées différentes de 0 sont des entiers premiers entre eux dans leur ensemble.

- a. L'entier n est égal à deux : démontrer qu'il existe un endomorphisme u de matrice U appartenant à $GL(2;\mathbb{Z})$ tel que le vecteur x soit l'image du vecteur e_1 par $u: x = u(e_1)$. En déduire qu'il existe un vecteur $y \in \mathbb{Z}^2$ tel que la famille (x,y) soit une "base" de \mathbb{Z}^2 .
- **b.** L'entier n est supérieur ou égal à 3 : soit $(d_i)_{i \in [1,n]}$ la suite des entiers définis par les relations suivantes :
 - $d_{n-1} = P(x_n, x_{n-1})$;
 - pour tout entier $1 \leqslant i \leqslant n-2$, $d_i = P(d_{i+1}, x_i)$.

Pour tout entier k compris entre 1 et n-1, y^k est le vecteur dont les coordonnées sont $x_1, x_2, \ldots, x_{k-1}, d_k, 0, \ldots, 0$.

Démontrer l'existence d'un endomorphisme v_{n-1} tel que $v_{n-1}(x) = y^{n-1}$ (de coordonnées $x_1, x_2, \ldots, x_{n-2}, d_{n-1}, 0$).

Démontrer, pour tout entier k, l'existence d'un endomorphisme v_k de matrice V_k appartenant à $GL(n;\mathbb{Z})$ telle que l'image du vecteur x par l'endomorphisme v_k , soit le vecteur y_k : $v_k(x) = y^k$.

En déduire l'existence d'un endomorphisme u de matrice U appartenant à $\mathrm{GL}(n;\mathbb{Z})$ tel que la relation $x=u(e_1)$ ait lieu.

c. Démontrer qu'il existe n-1 vecteurs z^2, z^3, \ldots, z^n tels que la famille $(x, z^2, z^3, \ldots, z^n)$ soit une "base" de \mathbb{Z}^n .

Deuxième partie : Matrices Z-congruentes

Deux matrices A et B appartenant à $\mathcal{M}(n;\mathbb{R})$ sont dites \mathbb{Z} -congruentes si et seulement s'il existe une matrice U appartenant à $\mathrm{GL}(n;\mathbb{Z})$ telle que la relation $B=U^{\mathrm{T}}AU$ ait lieu. Il est admis que cette propriété est une relation d'équivalence notée $A\equiv B$.

Soit A une matrice de $S^+(n;\mathbb{R})$. L'ensemble des valeurs prises par la forme quadratique, associée à A, $q(x)=(x|a(x))=X^{\mathrm{T}}AX$, lorsque x est un vecteur non nul de \mathbb{Z}^n , est un ensemble de réels strictement positifs. Il est admis que la borne inférieure m(A) de cet ensemble existe et est un réel positif ou nul :

$$m(A) = \inf_{x \in \mathbb{Z}^n \setminus \{0\}} (x|a(x)) \geqslant 0.$$

Le but de cette partie est de montrer que, dans $S^+(n;\mathbb{R})$, toute matrice A est \mathbb{Z} -congruente à une matrice B de $S^+(n;\mathbb{R})$ telle que m(B) soit égal au coefficient b_{11} .

II.1. Propriétés des matrices \mathbb{Z} -congruentes :

Soient A et B deux matrices de $\mathcal{M}(n;\mathbb{R})$ \mathbb{Z} -congruentes. La matrice A appartient à l'ensemble $\mathcal{S}^+(n;\mathbb{R})$.

- a. Démontrer que la matrice B appartient aussi à l'ensemble $\mathcal{S}^+(n;\mathbb{R})$.
- **b.** Établir les relations : $\det A = \det B$, m(A) = m(B).
- c. Soit B la matrice définie par la relation : $B = \begin{pmatrix} 2 & -2 \\ -2 & 3 \end{pmatrix}$. Établir que la matrice B appartient à l'ensemble $S^+(2;\mathbb{R})$ (utiliser la forme quadratique associée à cette matrice) ; déterminer le réel m(B).

II.2. Propriétés du réel m(A):

Dans cette question, la matrice A, associée à l'endomorphisme a, appartient à l'ensemble $S^+(n;\mathbb{R})$.

a. Comparer les réels m(A) et a_{11} .

Il est admis qu'il n'existe qu'un nombre fini de vecteurs x de \mathbb{Z}^n vérifiant $(x|a(x)) \leq a_{11}$. En déduire l'existence d'au moins un vecteur z appartenant à \mathbb{Z}^n vérifiant l'égalité

$$(z|a(z)) = m(A).$$

Soient z_1, z_2, \ldots, z_n les coordonnées de ce vecteur z. Démontrer que les coordonnées différentes de 0 sont des entiers relatifs premiers entre eux dans leur ensemble et que le réel m(A) est strictement positif.

b. Démontrer qu'il existe une matrice B \mathbb{Z} -congruente à la matrice A telle que la relation $b_{11} = m(B)$ ait lieu.

Troisième partie : Majoration de m(A)

Le but de cette partie est d'établir, pour une matrice A appartenant à l'ensemble $S^+(n;\mathbb{R})$, une relation simple donnant une majoration du réel m(A) au moyen du déterminant de A. Cette relation est d'abord établie pour les matrices d'ordre 2 en introduisant la définition de matrice "réduite" puis établie pour les matrices d'ordre n.

III.1. Relations vérifiées par les coefficients d'une matrice de $S^+(2;\mathbb{R})$:

On considère une matrice A symétrique d'ordre 2 qui s'écrit $A = \begin{pmatrix} a & b \\ b & c \end{pmatrix}$

a. Démontrer qu'une matrice A appartient à $\mathcal{S}^+(2,\mathbb{R})$ si et seulement si ses coefficients vérifient les relations :

$$a > 0$$
, $c > 0$ et $ac - b^2 > 0$.

b. Démontrer que, pour qu'une matrice A appartienne à $S^+(2,\mathbb{R})$, il suffit que ses coefficients vérifient les relations 0 < a, $2|b| \le a \le c$.

Déterminer le réel m(A) lorsque les coefficients a, b et c vérifient les inégalités ci-dessus.

Une matrice A de $S^+(2,\mathbb{R})$ est dite "réduite" lorsque ses coefficients a, b et c vérifient les relations : 0 < a, $0 \le 2b \le a \le c$.

III.2. Matrice "réduite" Z-congruente à une matrice donnée :

Soit $A_1 = \begin{pmatrix} a_1 & b_1 \\ b_1 & c_1 \end{pmatrix}$ une matrice appartenant à $\mathcal{S}^+(2,\mathbb{R})$ telle que le réel $m(A_1)$ soit égal au coefficient a_1 .

Démontrer qu'il existe une matrice $A_2 = \begin{pmatrix} a_2 & b_2 \\ b_2 & c_2 \end{pmatrix}$, \mathbb{Z} -congruente à la matrice A_1 , dont les coefficients vérifient les relations : $0 < a_2$, $2|b_2| \le a_2 \le c_2$.

Établir cette propriété en recherchant une matrice $U = \begin{pmatrix} 1 & \lambda \\ 0 & 1 \end{pmatrix}$, où λ est un entier relatif, qui vérifie la relation suivante : $A_2 = U^{T}A_1U$.

En déduire qu'il existe une matrice A_3 (appartenant à $S^+(2;\mathbb{R})$) "réduite" et \mathbb{Z} -congruente à la matrice A_1 .

III.3. Relation entre les réels m(A) et $\det A$:

Démontrer que, pour toute matrice A de $S^+(2; \mathbb{R})$, les réels m(A) et det A sont liés par la relation suivante :

$$m(A) \leqslant \frac{2}{\sqrt{3}} \sqrt{\det A}.$$

Vérifier la relation ci-dessus pour la matrice B définie à la question II.1.c.

III.4. Matrice B induite par une matrice A:

L'entier n est supposé supérieur où égal à 3. Étant donné une matrice $A = (a_{ij})$ de $\mathcal{S}^+(n; \mathbb{R})$, dont le coefficient a_{11} est différent de 0, soit V la matrice dont les coefficients v_{ij} , $1 \leq i \leq n$,

 $1 \leq j \leq n$, sont définis par les relations :

$$v_{ij} = \begin{cases} 1 & \text{si } i = j \\ \frac{a_{1j}}{a_{11}} & \text{si } i = 1 \text{ et } j \geqslant 2 \\ 0 & \text{dans les autres cas.} \end{cases} V = \begin{pmatrix} 1 & \frac{a_{12}}{a_{11}} & \frac{a_{13}}{a_{11}} & \dots & \frac{a_{1n}}{a_{11}} \\ 0 & 1 & 0 & \dots & 0 \\ 0 & 0 & 1 & \dots & 0 \\ \vdots & & & \ddots & \vdots \\ 0 & 0 & 0 & \dots & 1 \end{pmatrix}$$

Soient a l'endomorphisme de matrice associée A dans la base canonique (e_1, e_2, \dots, e_n) de \mathbb{R}^n et f l'endomorphisme défini par les relations :

$$\forall i, 1 \leq i \leq n, f(e_i) = a_{11}a(e_i) - a_{1i}a(e_1).$$

a. Démontrer que le sous-espace vectoriel F de \mathbb{R}^n engendré par les vecteurs e_2, e_3, \ldots, e_n est stable par l'endomorphisme f.

Soit B la matrice d'ordre n-1 associée à la restriction de l'endomorphisme f (noté encore f) au sous-espace vectoriel F dans la base (e_2, e_3, \ldots, e_n) . Il est admis que la matrice V, définie ci-dessus vérifie la relation ci-après :

$$A = V^{\mathrm{T}} \begin{pmatrix} a_{11} & 0 \\ 0 & \frac{1}{a_{11}} B \end{pmatrix} V.$$

- b. Établir la relation qui lie les déterminants des matrices A et B entre eux.
- c. Étant donné un vecteur x de \mathbb{R}^n : $x = \sum_{i=1}^n x_i e_i$, soit x_F le vecteur du sous-espace vectoriel

F défini par la relation : $x_F = \sum_{i=2}^n x_i e_i$. Soit y le vecteur v(x) image du vecteur x par l'endomorphisme v de matrice associée V. Démontrer la relation :

$$(x|a(x)) = a_{11}y_1^2 + \frac{1}{a_{11}}(x_F|f(x_F)).$$

Démontrer que la matrice B appartient à l'ensemble $S^+(n-1;\mathbb{R})$.

III.5. Relation entre les réels $\det A$ et m(A):

Le but de cette question est d'établir, pour toute matrice A de $S^+(n;\mathbb{R})$, la relation ci-dessous, établie lorsque n=2:

$$m(A) \leqslant \left(\frac{4}{3}\right)^{\frac{n-1}{2}} (\det A)^{1/n}. \tag{R}$$

- a. Deux hypothèses sur la matrice A sont formulées :
 - $m(A) = a_{11}$;
 - \bullet la relation (R) ci-dessus est vraie pour la matrice B construite à partir de la matrice A comme à la question précédente.

D'après la question **II.2.a.**, il existe un vecteur $z_F = \sum_{i=2}^n z_i e_i$ (appartenant à \mathbb{Z}^{n-1}) pour

lequel l'égalité $(z_F|f(z_F)) = m(B)$ a lieu.

Démontrer qu'il existe un entier relatif z_1 tel que le vecteur z, de \mathbb{Z}^n , défini par la relation : $z = z_1 e_1 + z_F$, est transformé par l'endomorphisme v, de matrice associée V, en un vecteur y (y = v(z)) dont la première coordonnée y_1 vérifie $|y_1| \leq \frac{1}{2}$.

En déduire que la matrice A vérifie la relation (R).

b. Démontrer, pour toute matrice A de $S^+(n;\mathbb{R})$, la relation (R).