ENS PC 1998

L'usage de calculatrices électroniques de poche à alimentation autonome, non imprimantes et sans document d'accompagnement est autorisé. Cependant, une seule calculatrice à la fois est admise sur la table ou le poste de travail, et aucun échange n'est autorisé entre les candidats

Le problème aborde quelques aspects de la théorie des polynômes orthogonaux.

- La première partie introduit une famille de polynômes comme étant des "vecteurs propres",
- la deuxième partie adapte à cette famille un produit scalaire afin d'en faire des "polynômes orthogonaux";
- la troisième partie donne d'autres moyens (formule de **Rodrigues** et fonctions génératrices) d'obtenir ces polynômes ;
- la dernière partie, largement indépendante de la troisième, aborde, dans le cas particulier des polynômes de Laguerre, la question de la convergence en moyenne quadratique.

Première partie : étude algébrique

Dans cette partie on introduit les polynômes Π_n comme étant des "vecteurs propres" d'un endomorphisme.

 $\mathbb{R}[X]$ désigne l'ensemble des polynômes à coefficients réels, $\mathbb{R}_n[X]$ est le sous-espace des polynômes de degré au plus n. A et B étant les deux polynômes de $\mathbb{R}[X]$ suivants :

$$A = \alpha_2 X^2 + \alpha_1 X + \alpha_0 \text{ et } B = \beta_1 X + \beta_0.$$

On note pour tout $P \in \mathbb{R}[X]$:

$$\mathcal{L}(P) = AP'' + BP'$$

(ces notations sont valables dans tout le problème).

- **I.1.** Montrer que \mathcal{L} définit un endomorphisme de l'espace vectoriel $\mathbb{R}[X]$ et qu'il induit par restriction, pour tout entier n, un endomorphisme de $\mathbb{R}_n[X]$.
- **I.2.** Dans cette question, \mathcal{L} sera considéré comme un endomorphisme de $\mathbb{R}_2[X]$.
 - **a.** Ecrire la matrice de \mathcal{L} restreint à $\mathbb{R}_2[X]$, dans la base canonique $\{1, X, X^2\}$ de $\mathbb{R}_2[X]$.
 - b. Vérifier que, si

$$\forall k \in \{0, 1, 2\}, \ k\alpha_2 + \beta_1 \neq 0$$

alors \mathcal{L} restreint à $\mathbb{R}_2[X]$ est diagonalisable.

- **I.3.** On examine, toujours dans $\mathbb{R}_2[X]$, quelques cas particuliers, obtenus en spécifiant A et B.
 - a. (Polynômes de type **Hermite**). Ici $A = \alpha_0$ et $B = \beta_1 X + \beta_0$. On suppose que $\beta_1 \neq 0$. Déterminer explicitement une base de $\mathbb{R}_2[X]$ qui diagonalise \mathcal{L} restreint à $\mathbb{R}_2[X]$.
 - **b.** (Polynômes de type **Jacobi**). Ici $A = \alpha_2(X^2 1)$ et $B = \beta_1 X + \beta_0$. On suppose que $\beta_1 \neq 0$ et que $2\alpha_2 + \beta_1 = 0$.

Donner, dans ce cas, une condition nécessaire et suffisante pour que \mathcal{L} restreint à $\mathbb{R}_2[X]$ soit diagonalisable.

I.4. On revient ici au cas général. $A = \alpha_2 X^2 + \alpha_1 X + \alpha_0$ et $B = \beta_1 X + \beta_0$, et on suppose que :

(i)
$$\forall k \in \mathbb{N}, \ k\alpha_2 + \beta_1 \neq 0.$$

On suppose jusqu'à la fin du problème que la condition (i) est satisfaite.

2 ENS PC 1998

- **a.** Montrer que, pour tout entier n, \mathcal{L} , considéré comme un endomorphisme de $\mathbb{R}_n[X]$, est diagonalisable.
- **b.** En déduire que, pour tout entier n, il existe $\lambda_n \in \mathbb{R}$ et au moins un $\Pi_n \in \mathbb{R}[X]$, de degré n tel que : $\mathcal{L}(\Pi_n) = \lambda_n \Pi_n$.

Préciser λ_n et montrer que $\operatorname{Ker}(\mathcal{L} - \lambda_n \operatorname{Id}_{\mathbb{R}[X]})$ est de dimension 1.

c. La famille $(\Pi_n)_{n\in\mathbb{N}}$ constitue-t-elle une base de $\mathbb{R}[X]$?

À tout triplet (A, B, n) est donc associé un polynôme Π_n , défini à une constante multiplicative non nulle près. Cette notation est utilisée jusqu'à la fin du problème.

Deuxième partie : orthogonalité des polynômes Π_n

On se propose, dans trois cas particuliers, de mettre en place un produit scalaire qui fera de la famille $(\Pi_n)_{n\in\mathbb{N}}$ une famille orthogonale.

II.1. Si J est un intervalle ouvert non vide de \mathbb{R} et si ω est une fonction de classe \mathcal{C}^1 de J dans \mathbb{R}_+^* , on note

$$H_{\omega} = \{ f \in \mathcal{F}(J, \mathbb{R}) \mid f \text{ continue sur } J \text{ et } \omega f^2 \text{ intégrable sur } J \}$$

(on notera parfois J =]a, b[, cet intervalle n'est pas nécessairement borné, on peut avoir $a = -\infty$ ou bien $b = +\infty$).

- a. Montrer rapidement que H_{ω} est un espace vectoriel.
- **b.** Vérifier que l'on définit un produit scalaire sur H_{ω} en posant :

$$\forall (f,g) \in H^2_\omega, \ (f|g) = \int_J f(t)g(t)\omega(t) \,dt.$$

Dans la question suivante, on suppose que les polynômes, en tant que fonctions de J =]a, b[dans \mathbb{R} , sont des éléments de H_{ω} , A et B sont les deux polynômes définis dans la première partie.

II.2. Si l'on suppose que :

(ii)
$$\forall x \in J, \ \left(\frac{\mathrm{d}}{\mathrm{d}x}\omega(x)\right)A(x) + \omega(x)\left(\frac{\mathrm{d}}{\mathrm{d}x}A(x)\right) = \omega(x)B(x)$$

(iii)
$$\forall n \in \mathbb{N}, \lim_{\substack{x \to a \\ x > a}} \omega(x) x^n A(x) = \lim_{\substack{x \to b \\ x < b}} \omega(x) x^n A(x) = 0.$$

Montrer que :

$$\forall (n,m) \in \mathbb{N}^2, \ (n \neq m) \Rightarrow \left(\int_a^b \Pi_n(t) \Pi_m(t) \omega(t) \, \mathrm{d}t = 0 \right)$$

- II.3. On examine ici trois cas particuliers.
 - **a.** ("Hermite") on a donc $A = \alpha_0$ et $B = \beta_1 X + \beta_0$. On suppose de plus que $\alpha_0 \beta_1 < 0$. On pose :

$$J = \mathbb{R} \text{ et } \omega(x) = \exp\left[\frac{B(x)^2}{2\alpha_0\beta_1}\right].$$

Vérifier que les polynômes sont des éléments de H_{ω} et que les conditions (ii) et (iii) sont vérifiées.

b. ("Jacobi") ici l'expression de B est présentée sous une forme "plus agréable" :

$$B = (p+q+2)X + (p-q)$$

avec p et q réels vérifiant p+1>0 et q+1>0, celle de A simplifiée : $A=X^2-1$. Déterminer ω , une application de classe \mathcal{C}^1 de]-1,1[dans \mathbb{R}_+^* , telle que le couple ENS PC 1998 3

 $(]-1,1[,\omega)$ vérifie les conditions (ii) et (iii).

Pour ce couple, les polynômes sont-ils dans H_{ω} ?

c. ("Laguerre") on suppose ici que $A = \alpha_1(X - \rho)$ où ρ est un réel et que $B = \beta_1 X + \beta_0$. On suppose de plus que $\alpha_1 \beta_1 < 0$.

Déterminer une application ω de classe \mathcal{C}^1 de $]\rho, +\infty[$ dans \mathbb{R}_+^* telle que (ii) soit réalisée. Trouver une condition portant sur le signe de $\frac{B(\rho)}{\alpha_1}$ pour que le couple $(]\rho, +\infty[, \omega)$ vérifie (iii).

Montrer que dans ce cas les polynômes sont des éléments de H_{ω} .

Troisième partie : Rodrigues et les fonctions génératrices

On se place ici dans le cas général, c'est à dire que A et B vérifient (i) (cf. **I.4**), on suppose que ω est une application de J dans \mathbb{R}_+^* de classe \mathcal{C}^1 et que le couple (J, ω) vérifie (ii) et (iii) (cf. **II.2**). On suppose aussi que les polynômes sont éléments de H_{ω} .

III.1. a. Montrer que, pour tout couple $(n, p) \in \mathbb{N}^2$ vérifiant $p \leq n$, la fonction ωA^n est p fois dérivable sur J et qu'il existe un polynôme $Q_{n,p}$, dont on précisera le degré, tel que :

$$\forall x \in J, \ \frac{\mathrm{d}^p}{\mathrm{d}x^p} (\omega(x)A(x)^n) = \omega(x)A(x)^{n-p}Q_{n,p}(x).$$

b. Montrer que si $m \neq n$ alors :

$$(Q_{n,n}|\Pi_m)=0.$$

c. En déduire qu'il existe un lien entre le polynôme Π_n de la fin de la première partie et $Q_{n,n}$.

Ce lien constitue la formule de Rodrigues

- III.2. ("Legendre" un cas de Hermite simplifié). Ici A = -1 et B = 2X. On prendra pour couple (J, ω) celui qui est donné en II.3.a. On pose $H_n = Q_{n,n}$.
 - a. Vérifier que :

$$H_{n+1}(x) = 2xH_n(x) - \frac{\mathrm{d}}{\mathrm{d}x}H_n(x).$$

b. Établir l'égalité suivante :

$$\forall (x,t) \in \mathbb{R}^2, \ \frac{\partial^n}{\partial t^n} e^{-(x-t)^2} = e^{-(x-t)^2} H_n(x-t).$$

c. En déduire la formule :

$$\forall (x,t) \in \mathbb{R}^2, \ e^{2xt-t^2} = \sum_{n=0}^{+\infty} \frac{H_n(x)t^n}{n!}.$$

- **d.** Calculer H_5 .
- III.3. ("Laguerre" simplifié).

On se place dans une situation du type II.3.c avec ici A = X et B = -X + 1. Pour tout $n \in \mathbb{N}$ on note L_n le polynôme en x défini par :

$$L_n(x) = e^x \frac{\mathrm{d}^n}{\mathrm{d}x^n} \left(e^{-x} x^n \right).$$

a. Dans ce cas, quel lien existe-t-il entre L_n et Π_n ? (On peut poursuivre cette question III.3 même sans avoir répondu à III.3.a.)

4 ENS PC 1998

b. Établir la formule :

$$\forall x \in J, \ \forall n \in \mathbb{N}, \ L_{n+2}(x) + xL_{n+1}(x) = (2n+3)L_{n+1}(x) - (n+1)^2L_n(x).$$

Pour tout $x \in]0,1[$ on considère la fonction F_x définie par :

$$F_x(t) = \sum_{n=0}^{+\infty} \frac{L_n(x)t^n}{n!}.$$

- c. Montrer que le rayon de convergence, que l'on notera R_x , de la série entière qui définit F_x est non nul.
- **d.** Trouver une équation différentielle linéaire du premier ordre dont F_x est solution sur $]-R_x,R_x[$.
- e. Déterminer $F_x(t)$ et préciser la valeur de R_x .

QUATRIÈME PARTIE: CONVERGENCE QUADRATIQUE

Dans cette partie on ne s'intéresse qu'au cas de Laguerre du III.3.

Ici $J =]0, +\infty[$ et $\omega(x) = e^{-x}$. On note désormais N_{ω} la norme associée au produit scalaire (.|.) défini au II.1.b.

On suppose que les polynômes Π_n sont choisis normés $(N_{\omega}(\Pi_n) = 1)$ et que le coefficient de leur terme dominant est un réel positif, ainsi ils sont parfaitement déterminés.

- IV.1. Calculer $N_{\omega}(L_n)$ et exprimer Π_n à l'aide de L_n .
- **IV.2.** Soit $m \in \mathbb{N}$, on pose $\varphi_m(x) = e^{-mx}$.
 - **a.** Calculer $(\Pi_n|\varphi_m)_{\omega}$ ainsi que $N_{\omega}(\varphi_m)$.
 - **b.** En déduire que :

$$\lim_{n \to +\infty} N_{\omega} \left(\varphi_m - \sum_{k=0}^n (\Pi_k | \varphi_m) \Pi_k \right) = 0.$$

c. Pour $N \in \mathbb{N}$ et $(\mu_m)_{m \in [0,N]}$, une famille de réels, on considère :

$$\psi = \sum_{m=0}^{N} \mu_m \varphi_m.$$

Vérifier que :

$$\lim_{n \to +\infty} N_{\omega} \left(\psi - \sum_{k=0}^{n} (\Pi_k | \psi) \Pi_k \right) = 0.$$

- **IV.3.** Soit g une fonction définie et continue sur $[0, +\infty[$ telle que $\lim_{x\to +\infty} g(x) = 0$.
 - **a.** Montrer que la fonction h définie sur [0,1] par :

$$h(0) = 0$$
 et pour $u \neq 0$, $h(u) = g(-\ln u)$

est continue sur [0,1].

b. En déduire que $\forall \varepsilon > 0, \exists P \in \mathbb{R}[X]$ tel que

$$\int_0^{+\infty} e^{-t} (g(t) - P(e^{-t}))^2 dt \leqslant \varepsilon^2.$$

IV.4. Montrer que

 $\forall f \in H_{\omega}, \ \forall \varepsilon > 0, \ \exists g_f \text{ continue sur } [0, +\infty[\text{ v\'erifiant } \lim_{x \to +\infty} g_f(x) = 0 \text{ telle que } N_{\omega}(f - g_f) \leqslant \varepsilon$

IV.5. Montrer que $\forall f \in H_{\omega}$ la série

$$\sum (\Pi_n|f)\Pi_n$$

converge vers f pour la norme N_{ω} .