Ecole Polytechnique 2006 - Math PC

Titre: Polynômes à coefficients 1 ou −1, paires de Rudin-Shapiro.

Une séquence \underline{a} de longueur ℓ , $\ell \geqslant 1$, est un vecteur $(a_0, a_1, \dots, a_{\ell-1})$ de \mathbb{R}^{ℓ} où chacune de ses ℓ coordonnées vaut 1 ou -1.

Deux séquences <u>a</u> et <u>b</u>, de même longueur, forment une paire complémentaire si $\ell = 1$ ou si $\ell > 1$ avec pour tout entier $j, 1 \leq j \leq \ell - 1$, la j-ième condition de corrélation

$$\sum_{i=0}^{\ell-1-j} (a_i a_{i+j} + b_i b_{i+j}) = 0.$$

On note \mathcal{L} l'ensemble des longueurs des paires complémentaires.

Première partie: propriétés de \mathcal{L} 52

1. Pour $\ell=2$, la condition de corrélation C_1 est $a_0a_1+b_0b_1=0$. Donc $\underline{a}=(1,1)$ et $\underline{b}=(1,-1)$ Pour $\ell = 3$, les conditions de corrélation C_1 et C_2 sont respectivement

$$(a_0 + a_2)a_1 + (b_0 + b_2)b_1 = 0$$
 et $a_0a_2 + b_0b_2 = 0$.

Si $b_0=b_2,$ C_2 donne $a_0=-a_2$ ainsi $(a_0+a_2)a_1+(b_0+b_2)b_1=2b_0b_1\neq 0.$ Si $b_0=-b_2,$ C_2 donne $a_0=a_2$ ainsi $(a_0+a_2)a_1+(b_0+b_2)b_1=2a_0a_1\neq 0.$

Il en résulte que $3 \notin \mathcal{L}$

4

2.a) Pour $\underline{a} = (a_0, a_1, \dots, a_{\ell-1})$, de longueur $\ell \geqslant 1$, on pose $P_{\underline{a}}(X) = \sum_{i=1}^{\ell-1} a_i X^i$.

On a $P_{\underline{a}}(x)P_{\underline{a}}(x^{-1}) \sim a_0 a_{\ell-1} x^{\ell-1}$ lorsque x tend vers $+\infty$.

Si \underline{a} et \underline{b} sont deux séquences de longueur différentes, la plus longue ayant une longueur $\ell > 1$, on obtient $\lim_{x \to +\infty} |P_{\underline{a}}(x)P_{\underline{a}}(x^{-1}) + P_{\underline{b}}(x)P_{\underline{b}}(x^{-1})| = +\infty$.

La fonction $x \mapsto P_a(x)P_a(x^{-1}) + P_b(x)P_b(x^{-1})$ n'est donc pas bornée sur $]0, +\infty[\dots]$

En introduisant k = |i - j|, on obtient les calculs suivants

$$\begin{split} P_{\underline{a}}(x)P_{\underline{a}}(x^{-1}) &= \sum_{0 \leqslant i,j \leqslant \ell-1} a_i a_j x^{i-j} \\ &= \sum_{i=0}^{\ell-1} a_i^2 + \sum_{k=1}^{\ell-1} \left(\sum_{i=1}^{\ell-1-k} a_i a_{i+j}\right) x^k + \sum_{k=1}^{\ell-1} \left(\sum_{i=1}^{\ell-1-k} a_i a_{i+j}\right) x^{-k} \end{split}$$

Ainsi pour deux séquences \underline{a} et \underline{b} de même longueur ℓ , on obtient

$$P_{\underline{a}}(x)P_{\underline{a}}(x^{-1}) + P_{\underline{b}}(x)P_{\underline{b}}(x^{-1}) = \sum_{i=0}^{\ell-1} (a_i^2 + b_i^2) + \sum_{k=1}^{\ell-1} \left(\sum_{i=1}^{\ell-1-k} a_i a_{i+j} + b_i b_{i+j}\right) (x^k + x^{-k}).$$

Si <u>a</u> et <u>b</u> forment une paire complémentaire alors, pour tout $x \neq 0$,

$$P_{\underline{a}}(x)P_{\underline{a}}(x^{-1}) + P_{\underline{b}}(x)P_{\underline{b}}(x^{-1}) = \sum_{i=0}^{\ell-1} (a_i^2 + b_i^2) = 2\ell.$$

Ainsi la fonction $F: x \mapsto P_a(x)P_a(x^{-1}) + P_b(x)P_b(x^{-1})$ est constante sur $\mathbb{R}\setminus\{0\}$

Inversement supposons la fonction constante sur $\mathbb{R}\setminus\{0\}$.

Lemme: si $F(x) = \frac{P(x)}{O(x)}$ est une fonction rationnelle constante alors F est un polynôme constant.

En effet, P(x) - CQ(x) = 0 pour une infinité de valeurs de x donc P = CQ et comme $P \wedge Q = 1$ alors P et Q sont des polynômes constants.

Maintenant, si on reprend l'écriture de F donnée ci-dessus alors les coefficients de x^k et de x^{-k} , pour $k \neq 0$, sont nuls ce qui assure la réciproque:

$$\sum_{i=1}^{\ell-1-k} a_i a_{i+j} + b_i b_{i+j} = 0$$

pour k variant de $\ell-1$ à 1, ainsi la paire $\underline{a}, \underline{b}$ est complémentaire.....

2.b) Si <u>a</u> est de longueur ℓ , alors $P_{\underline{a}}(1) = \ell - 2k$ où k est le nombre de coefficients égaux à -1, donc $P_a(1)$ a même parité que ℓ .

Il en résulte que si \underline{a} et \underline{b} sont de même longueur, alors $P_{\underline{a}}(1)$ et $P_{\underline{b}}(1)$ sont des entiers de même

Soient $\ell \in \mathcal{L}$ et a, b une paire complémentaire de longueur ℓ .

On note $I = \{i \mid a_i = b_i\}$, $J = \{i \mid a_i = -b_i\}$, $\alpha = \sum_{i \in I} a_i$ et $\beta = \sum_{i \in J} a_i$. On a $P_{\underline{a}}(1) = \alpha + \beta$ et $P_{\underline{b}}(1) = \alpha - \beta$ donc $P_{\underline{a}}(1)^2 + P_{\underline{b}}(1)^2 = 2\alpha^2 + 2\beta^2 = 2\ell$.

Ainsi tout élément de \mathcal{L} peut s'écrire comme la somme de deux carrés d'entiers....... 4 Nota: on retrouve $3 \notin \mathcal{L}$.

2.c) Si m=2k alors $m^2\equiv 0$ (4) et si m=2k+1 alors alors $m^2\equiv 1$ (4), ainsi pour tout $\ell\in\mathcal{L}$, on a $\ell \equiv 0 + 0(4)$ ou $\equiv 0 + 1(4)$ ou $\equiv 1 + 0(4)$ ou $\equiv 1 + 1(4)$. L'ensemble infini des entiers congrus à 3 modulo 4 ne contient donc aucun élément de \mathcal{L} .

- **3.a)** Soient \underline{a} et \underline{b} deux séquences de même longueur et $U = \frac{1}{2}(P_{\underline{a}} + P_{\underline{b}})$ et $V = \frac{1}{2}(P_{\underline{a}} P_{\underline{b}})$. Le calcul donne $U(x)U(x^{-1}) + V(x)V(x^{-1}) = \frac{1}{2}\left(P_{\underline{a}}(x)P_{\underline{a}}(x^{-1}) + P_{\underline{b}}(x)P_{\underline{b}}(x^{-1})\right)$. Il résulte de **2.a)** que \underline{a} et \underline{b} forment une paire complémentaire si et seulement si la fonction
- **3.b)** On écrit les séquences $\underline{a} = (1,1,-1,1,-1,1,-1,-1,1,1)$ et $\underline{b} = (1,1,-1,1,1,1,1,1,-1,-1)$ dans un tableau

ĺ	degré	0	1	2	3	4	5	6	7	8	9
	a	1	1	-1	1	-1	1	-1	-1	1	1
Ī	b	1	1	-1	1	1	1	1	1	-1	-1

puis on fait la demi-somme et la demi différence pour chaque degré, d'où

$$\begin{cases} U(x) = 1 + x - x^2 + x^3 + x^5 \\ V(x) = -x^4 - x^6 - x^7 + x^8 + x^9 = -x^4 (1 + x^2 + x^3 - x^4 - x^5) \end{cases}$$

Le calcul donne

$$U(x)U(x^{-1}) + V(x)V(x^{-1}) = (1 + x - x^2 + x^3 + x^5)(1 + \frac{1}{x} - \frac{1}{x^2} + \frac{1}{x^3} + \frac{1}{x^5}) + (1 + x^2 + x^3 - x^4 - x^5)(1 + \frac{1}{x^2} + \frac{1}{x^3} - \frac{1}{x^4} - \frac{1}{x^5}) = 10.$$

- **4.** Soit \underline{v} une séquence de longueur paire 2m > 0 et n le nombre de coordonnées de \underline{v} égales à -1. On a $\sum_{i=0}^{2m_1} v_i = 2m - 2n$, donc l'assertion (i) "4 divise la somme $\sum_{i=0}^{2m_1} v_i$ " équivant à m-n pair, c'est-à-dire l'assertion (ii) "n a la même parité que m".......
 - On a $\prod_{i=0}^{2m_1} v_i = (-1)^n$ donc l'assertion (ii) équivant à l'assertion (iii) " $\prod_{i=0}^{2m_1} v_i = (-1)^m$ ".....2

- **5.** Soient \underline{a} et \underline{b} deux séquences formant une paire complémentaire de longueur $\ell \geqslant 2$. Pour tout entier $i, 1 \leqslant i \leqslant \ell 1$, on pose $x_i = a_i b_i$.
- **5.a)** Soit j un entier tel que $1 \le j \le \ell 1$. La somme des coordonnées de la séquence

$$(a_0a_j,\ldots,a_{\ell-1-j}a_{\ell-1},b_0b_j,\ldots,b_{\ell-1-j}b_{\ell-1})$$

de longueur paire $2(\ell - j)$ est nulle d'après la j-ième condition de corrélation. Elle est donc divisible par 4 et il résulte de l'assertion (iii) de **4.** que

$$\prod_{k=0}^{\ell-1-j} x_k x_{k+j} = (-1)^{\ell-j}.$$

Pour $j\leqslant l-2$ alors, en tenant compte du fait que $x_k^2=1,$ on a

$$\prod_{k=0}^{l-1-j} x_k x_{k+j} \prod_{k=0}^{l-2-j} x_k x_{k+j+1} = -1$$

$$= \underbrace{\prod_{k=0}^{l-1-j} x_k \prod_{k=0}^{l-2-j} x_k}_{=x_{l-1-j}} \times \underbrace{\prod_{k=j}^{l-1} x_k \prod_{k=j+1}^{l-1} x_k}_{=x_j} = x_j x_{l-1-j}.$$

5.c) Si l=2m+1 alors, avec j=m on a $x_m^2=-1$ ce qui est impossible, l est donc pair.

Deuxième partie: paires de Rudin-Shapiro 28

Deux polynômes séquentiels forment une paire complémentaire de polynômes lorsqu'ils sont associés à des séquences formant une paire complémentaire.

Soient les deux suites de polynômes $(P_n)_{n\in\mathbb{N}}$ et $(Q_n)_{n\in\mathbb{N}}$ défines par

$$P_0(X) = Q_0(X) = 1$$
, $P_{n+1}(X) = P_n(X) + X^{2^n}Q_n(X)$, $Q_{n+1}(X) = P_n(X) - X^{2^n}Q_n(X)$.

- **6.a)** Le calcul donne $P_1(X) = 1 + X$ et $Q_1(X) = 1 X$ puis $P_2(X) = 1 + X + X^2 X^3$ et $Q_2(X) = 1 + X X^2 + X^3$.
- **6.b)** Posons $a_n = P_n(1)$ et $b_n = Q_n(1)$ alors on obtient le système $\begin{cases} a_{n+1} = a_n + b_n \\ b_{n+1} = a_n b_n \end{cases}$ donc, avec la deuxième relation, $a_n = b_{n+1} + b_n$ et en reportant dans la première relation on obtient $b_{n+2} = 2b_n$. Comme $b_0 = 1$ et $b_1 = 0$, on en déduit que $b_{2k} = 2^k$ et $b_{2k+1} = 0$ puis $a_{2k} = 2^k$, $a_{2k+1} = 2^{k+1}$.

Attention pour x = -1, on a la même relation de récurrence si $n \ge 1$.

7. Montrons par récurrence sur $n \in \mathbb{N}$ que P_n et Q_n forment une paire complémentaire de polynômes.

Par convention, c'est vrai pour n = 0 car $P_0 = 1$ et $Q_0 = 1$.

Avec les polynômes U,V de la question 3.a, associés à P_{n+1} et Q_{n+1} , on a $U=P_n, V=X^{2^n}Q_n$ donc

$$U(x)U(x^{-1}) + V(x)V(x^{-1}) = P_n(x)P_n(x^{-1}) + Q_n(x)Q_n(x^{-1})$$

- 8. Montrons par récurrence sur $n \geqslant 0$ que $\forall z \in \mathbb{C} \setminus \{0\}$, $Q_n(z) = (-1)^n z^{2^n-1} P_n(-z^{-1})$. Pour n = 0 le résultat est trivial car $P_0 = Q_0 = 1$ Pour n = 1, on a $-zP_1(-z^{-1}) = -z + 1 = Q_1(z)$. On suppose l'égalité établie jusqu'à l'ordre $n \geqslant 1$. On a $P_{n+1}(-z^{-1}) = P_n(-z^{-1}) + z^{-2^n}Q_n(-z^{-1})$ avec $Q_n(-z^{-1}) = (-1)^{n+1}z^{-2^n+1}P_n(z)$ ainsi $P_{n+1}(-z^{-1}) = P_n(-z^{-1}) + (-1)^{n+1}z^{-2^{n+1}+1}P_n(z)$ et $(-1)^{n+1}z^{2^{n+1}-1}P_{n+1}(-z^{-1}) = (-1)^{n+1}z^{2^{n+1}-1}P_n(-z^{-1}) + P_n(z)$. Par ailleurs $Q_{n+1}(z) = P_n(z) z^{2^n}Q_n(z) = P_n(z) + (-1)^{n+1}z^{2^{n+1}-1}P_n(-z^{-1})$. D'où l'égalité à l'ordre n + 1.
- **9.a)** Soit $T(X) = t_0 + t_1 X + \ldots + t_d X^d \in \mathbb{C}[x]$ de degré $d \ge 1$. Montrons que toute racine $z \in \mathbb{C}$ de T vérifie $|z| \le 1 + M$ où $M = \sup_{0 \le i \le d-1} |t_i/t_d|$.

 $|z|^d(|z|-1) \leqslant M(|z|^d-1)$, puis $|z|-1 \leqslant M \frac{|z|^d-1}{|z|^d} \leqslant M$ d'où l'inégalité $|z| \leqslant 1+M....$

- **9.b)** Soit z une racine (complexe) du polynôme P_nQ_n pour $n \ge 1$. Alors z est racine de P_n ou de Q_n et $z \ne 0$. Comme les coefficients de P_n ou Q_n valent ± 1 , on obtient, d'après **9.a)** $|z| \le 2 \dots 1$
 - D'après 8., on a $Q_n(z) = (-1)^n z^{2^n 1} P_n(-z^{-1})$ donc $P_n(z) = (-1)^{n+1} z^{2^n 1} Q_n(-z^{-1})$ ainsi $-z^{-1}$ est racine de P_n ou de Q_n donc d'après 9.a) $|z^{-1}| \leq 2$

Finalement

$$\frac{1}{2} \leqslant |z| \leqslant 2.$$

Si |z| = 2, alors $|z^{2^n - 1}| = |R_n(z)|$ où R_n est le polynôme P_n ou Q_n tronqué à l'ordre $2^n - 2$. On a $|z^{2^n - 1}| = 2^{2^n - 1}$ et $|R_n(z)| \le 2^{2^n - 2} + \ldots + 2 + 1 = 2^{2^n - 1} - 1$ ce qui est impossible.

Si $|z| = \frac{1}{2}$, on considère la racine $-z^{-1}$ pour se ramener au cas antérieur.

Il en résulte que les deux inégalités sont strictes......4

10.a) P_n est la partie de P_{n+1} tronquée à l'ordre $2^n - 1$, il existe donc une série entière, $S(z) = \sum_{p=0}^{\infty} u_p z^p$, dont les P_n sont des sommes partielles.

Comme $|u_p| = 1$ pour tout p, le rayon de convergence est égal à 1.

10.b) On a $P_n(z) = \sum_{p=0}^{2^n-1} u_p z^p$ avec $u_p = \pm 1$.

Pour tout $|z| \le \frac{1}{2}$, on a $|P_n(z)| \ge 1 - \left|\sum_{p=1}^{2^n-1} u_p z^p\right|$ avec $\left|\sum_{p=1}^{2^n-1} u_p z^p\right| \le \sum_{p=1}^{2^n-1} \frac{1}{2^p} = 1 - 2^{1-2^n}$ ainsi $|P_n(z)| \ge 2\left(\frac{1}{2}\right)^{2^n}$.

Supposons que la somme de la série S ait un zéro z_0 tel que $|z_0| < \frac{1}{2}$.

On a
$$|P_n(z_0)| = |S(z_0) - P_n(z_0)| \le \sum_{n=2^n}^{\infty} |z_0|^p = \frac{1}{1 - |z_0|} |z_0|^{2^n}$$
.

On aboutit à une contradiction, puisque $\frac{1}{1-|z_0|}|z_0|^{2^n} < 2\left(\frac{1}{2}\right)^{2^n}$.

La somme de la série S n'a donc pas de zéros dans le disque ouvert de rayon 1/2 centré à l'origine.