TD DU 31/01/2011 ET DU 7/02/2011

1. Unicité des coefficients de Fourier.

On veut prouver que si c_0 , $(a_n)_{n\in\mathbb{N}^*}$ et $(b_n)_{n\in\mathbb{N}^*}$ sont des complexes tels que

(C)
$$\forall x \in \mathbb{R}, \ c_0 + \sum_{n=1}^{+\infty} a_n \cos nx + b_n \sin nx = 0$$

alors $c_0 = a_n = b_n = 0$ pour tout n. On supposera la condition (C) réalisée pour toutes les questions qui suivent. On pose aussi $u_n(x) = a_n \cos nx + b_n \sin nx$.

- (1) Montrer que l'on peut définir $F(x) = \frac{1}{2}c_0x^2 \sum_{n=1}^{+\infty} \frac{u_n(x)}{n^2}$ fonction continue sur \mathbb{R} .
- (2) Soit f une fonction définie sur \mathbb{R} , on pose $\Delta_2 f(x,h) = f(x+h) + f(x-h) 2f(x)$. Montrer que $\frac{\Delta_2 F(x,2h)}{4h^2} = c_0 + \sum_{n=1}^{+\infty} \frac{\sin^2 nh}{n^2h^2} u_n(x)$.
- (3) On pose $\rho_n(h) = \sum_{k=n}^{+\infty} \frac{\sin^2 kh}{k^2h^2} u_k(x)$ et $r_n(x) = \sum_{k=n}^{+\infty} u_k(x)$. Montrer que $\rho_N(h) = \frac{\sin^2 Nh}{N^2h^2} r_N - \sum_{n=N}^{+\infty} \left[\frac{\sin^2 nh}{n^2h^2} - \frac{\sin^2(n+1)h}{(n+1)^2h^2} \right] r_{n+1}$. En déduire que $\frac{\Delta_2 F(x, 2h)}{4h^2} \to 0$ quand $h \to 0$.
- (4) a) Soit $\Phi(t) = F(t) F(0) \frac{t}{2\pi}(F(2\pi) F(0))$ et $\psi_{\varepsilon}(t) = \Phi(t) \frac{\varepsilon}{2}t(2\pi t)$. S'il existe $t' \in]0, 2\pi[$ tel que $\Phi(t') > 0$ montrer qu'il existe $\varepsilon > 0$ tel que $\Psi_{\varepsilon}(t') > 0$. b) Soit t_0 tel que $\Psi_{\varepsilon}(t_0) = \max_{t \in [0, 2\pi]} \Psi_{\varepsilon}(t)$.

Montrer que $\frac{\Delta_2 \Psi_{\varepsilon}(t_0, h)}{h^2} \to \varepsilon$.

- c) Déduire du b une contradiction puis que F est affine.
- d) Montrer alors que $c_0 = 0$ puis que F est constante.
- (5) Conclure.

Solution 1

(1) Comme la série de la condition (C) converge alors $u_n(x) \to 0$, en particulier $a_n = u_n(0) \to 0$ et $b_n \sin nx = u_n(x) - a_n \cos nx \to 0$.

Si b_n ne tend pas vers 0 alors il existe (par exemple) $\alpha > 0$ et φ telle que $\forall n \in \mathbb{N}, b_{\varphi(n)} \geqslant \alpha$. On a ainsi $f_n(x) = \sin \varphi(n)x$ qui tend vers 0 (car $b_{\varphi(n)}f_n(x) \to 0$), f_n^2 est bornée (par

1), on utilise alors le théorème de convergence dominée d'où $\int_0^{2\pi} |\sin^2(\varphi(n)x)| dx \to 0$

or $\int_0^{2\pi} |\sin^2(\varphi(n)x)| dx = \pi$ d'où la contradiction.

On a ainsi $|u_n(x)| \leq |a_n| + |b_n| \to 0$ et la convergence de la série définissant F est normale ce qui assure à la fois l'existence de F ainsi que sa continuité.

- (2) Il suffit de faire les calculs!
- (3) L'expression de $\rho_N(h)$ demandée est une simple utilisation de la transformation d'Abel (on écrit que $u_k(x) = r_k(x) r_{k+1}(x)$).

Comme $r_n \to 0$ alors pour tout $\varepsilon > 0$ il existe $N \in \mathbb{N}$ tel que $\forall n \ge N, |r_n| \le \varepsilon$. En outre

$$\left| \frac{\sin^2 nh}{n^2h^2} - \frac{\sin^2(n+1)h}{(n+1)^2h^2} \right| \leqslant \int_{nh}^{(n+1)h} \left| \left(\frac{\sin^2 t}{t^2} \right)' \right| dt$$

et comme $\left(\frac{\sin^2 t}{t^2}\right)' = \frac{\sin 2t}{t^2} - \frac{2\sin 2t}{t^3}$ alors $\int_1^x \left| \left(\frac{\sin^2 t}{t^2}\right)' \right| dt$ admet une limite quand

 $x \to +\infty$. $\frac{\sin^2 t}{t^2}$ admet un développement en série entière en 0 donc $\int_1^x \left| \left(\frac{\sin^2 t}{t^2} \right)' \right| dt$ admet une limite quand $x \to 0$.

Finalement
$$|\rho_N(h)| \le \varepsilon + \varepsilon \sum_{k=N}^{+\infty} \int_{nh}^{(n+1)h} \left| \left(\frac{\sin^2 t}{t^2} \right)' \right| dt \le \varepsilon \left(1 + \int_0^{+\infty} \left| \left(\frac{\sin^2 t}{t^2} \right)' \right| dt \right).$$

On a ainsi

$$\frac{\Delta_2 F(x, 2h)}{4h^2} = c_0 + \sum_{n=1}^{+\infty} \frac{\sin^2 nh}{n^2 h^2} u_n(x) = \sum_{n=1}^{+\infty} \left(\frac{\sin^2 nh}{n^2 h^2} - 1 \right) u_n(x) \quad \text{relation (C)}$$

$$= \sum_{n=1}^{N-1} \left(\frac{\sin^2 nh}{n^2 h^2} - 1 \right) u_n(x) + \rho_N(h) - r_N.$$

Or pour $\varepsilon > 0$ on vient de voir qu'il existe $N \in \mathbb{N}$ tel que $|\rho_N(h)| \leqslant \varepsilon$ indépendamment de h et $\sum_{n=1}^{N-1} \left(\frac{\sin^2 nh}{n^2h^2} - 1 \right) u_n(x) \to 0$, on peut conclure en conséquence que $\frac{\Delta_2 F(x,2h)}{4h^2} \to 0$ quand $h \to 0$.

- (4) a) Pour $t \in [0, 2\pi]$, $0 \le t(2\pi t) \le \pi^2$ donc $\Psi_{\varepsilon}(t') \ge \Phi(t') \frac{\varepsilon \pi^2}{2} > 0$ si on prend ε assez petit.
 - b) On a $\frac{\Delta_2 \Psi_{\varepsilon}(t_0, h)}{h^2} = \frac{\Delta_2 \Phi(t_0, h)}{h^2} + \varepsilon = \frac{\Delta_2 F(t_0, h)}{h^2} + \varepsilon \to \varepsilon$.
 - c) Pour h assez petit on a $\Psi_{\varepsilon}(t_0 + h) + \Psi_{\varepsilon}(t_0 h) > 2\Psi_{\varepsilon}(t_0)$ or cela entraı̂ne que l'un des deux termes du membre de gauche est > à $\Psi_{\varepsilon}(t_0)$ ce qui est contradictoire $(t_0 \in]0, 2\pi[$ donc on peut aussi s'arranger pour que $t_0 \pm h \in [0, 2\pi])$.

On démontre de même que $\Psi_{\varepsilon}(t') < 0$ est impossible donc $\Psi_{\varepsilon} = 0$ et ceci pour tout ε donc $\Phi = 0$ ce qui signifie que F est affine et on peut généraliser le résultat à tout \mathbb{R}

d) On a alors F(t) = at + F(0) d'où

$$F(2\pi) = a2\pi + F(0) = 2c_0\pi^2 - \sum_{n=1}^{+\infty} \frac{u_n(2\pi)}{n^2} = 2c_0\pi^2 + F(0)$$

$$F(4\pi) = a4\pi + F(0) = 8c_0\pi^2 - \sum_{n=1}^{+\infty} \frac{u_n(4\pi)}{n^2} = 8c_0\pi^2 + F(0).$$

On déduit de ces égalités que $c_0 = 0$ donc $F(0) = F(2\pi)$ i.e. F est constante.

(5) Comme F est constante ses coefficients de Fourier sont nuls et comme la série définissant F converge normalement on en déduit que $u_n(x) = 0$ soit $a_n = b_n = 0$ pour tout n.