TD DU 20/01/2012

EXERCICE 1. Soit Q une forme quadratique définie positive sur \mathbb{R}^n , de matrice $A=(a_{ij})$. On définit

$$q(x_1, \dots, x_{n-1}) = \sum_{1 \le i, j \le n-1} (a_{nn}a_{ij} - a_{ni}a_{nj})x_ix_j.$$

Montrer que q est une forme quadratique définie positive sur \mathbb{R}^{n-1} .

EXERCICE 2. Soit C un endomorphisme d'un espace euclidien E. Montrer l'équivalence des propositions suivantes :

- (i) Il existe $y \in \mathcal{S}^+(E)$ défini positif tel que $y CyC^* > 0$.
- (ii) $C^n \to 0$ quand $n \to +\infty$.

Solution 1 Soit (e_1, \ldots, e_n) la base canonique de \mathbb{R}^n , on pose $x = x_1e_1 + \cdots + x_{n-1}e_{n-1}$ alors, comme $Q(e_n) = a_{nn} > 0$, $Q(x) = \sum_{1 \leq i,j \leq n-1} a_{ij}x_ix_j$ et $B(e_n, x) = \sum_{i=1}^{n-1} a_{ni}x_i$, on a

$$q(x_1, \dots, x_{n-1}) = a_{nn} \sum_{1 \le i, j \le n-1} a_{ij} x_i x_j - \sum_{1 \le i, j \le n-1} a_{ni} x_i a_{nj} x_j$$
$$= Q(e_n) Q(x) - B(e_n, x)^2 \geqslant 0$$

grâce à l'inégalité de Cauchy-Schwarz.

Si $q(x_1, \ldots, x_{n-1}) = 0$ alors on sait que la famille (x, e_n) est liée (cas d'égalité dans Cauchy-Schwarz) ce qui entraı̂ne x = 0.

Solution 2

 $(ii) \Rightarrow (i)$ LEMME: Si a est un endomorphisme d'un espace vectoriel F de dimension finie, alors $a^n \to 0 \Leftrightarrow \sum a^n$ converge.

Dém : Soit $S_N = \sum_{n=0}^N a^n$ alors $(I-a)S_N = I - a^{N+1} \to I$ et comme 1 n'est pas valeur propre de a (sinon a^n ne pourrait tendre vers 0), I-a est inversible. Par continuité du produit dans l'algèbre $\mathcal{L}(F)$, on en déduit que $\sum_{n=0}^N a^n \to (I-a)^{-1}$.

On applique ce résultat à $a(x) = \overset{n-\upsilon}{C} x C^*$ endomorphisme de $F = \mathcal{S}(E)$: En effet

- $a^n(x) = C^n x (C^*)^n$ (immédiat par récurrence, ne pas oublier que a^n est le composé n-ième de a),
- $||a^n(x)|| \le ||C^n|| \cdot ||x|| \cdot ||(C^*)^n||$, comme $(C^*)^n = (C^n)^*$ (immédiat si on prend les matrices) donc $a^n(x) \to 0$ pour tout x de F et par conséquent $a^n \to 0$.

Si $x \in \mathcal{S}(E)$ est défini positif alors $(I-a)^{-1}(x) = y = \sum_{n=0}^{+\infty} a^n(x)$ est aussi défini positif car

$$(y(v)|v) = (x(v)|v) + \sum_{n=1}^{+\infty} (C^n x (C^*)^n (v)|v)$$
$$= \underbrace{(x(v)|v)}_{>0} + \underbrace{\sum_{n=1}^{+\infty} (x(C^*)^n (v)|(C^*)^n (v))}_{>0} > 0$$

pour $v \neq 0$).

On a aussi $y-CyC^*=\sum_{n=0}^{+\infty}a^n(x)-\sum_{n=0}^{+\infty}Ca^n(x)C^*=x$ qui est défini positif. y ainsi défini convient.

 $(i) \Rightarrow (ii)$ Soit $||x||_y = \sqrt{(y(x)|x)}$ alors $(y(x) - CyC^*(x)|x) > 0$ donc $(CyC^*(x)|x) < ||x||_y^2$ ce qui donne $||C^*(x)||_y < ||x||_y^2$ et en conclusion $||C^*||_y < 1$ (car, étant en dimension finie, la norme associée est atteinte en un point de la sphère unité).

Comme $||C^{*n}||_y \leq ||C^*||_y^n$ alors $C^{*n} \to 0$, de même pour C^n c.q.f.d.