CHAPITRE 1

Algèbre générale

1.1 Groupes

1.1.1 Groupes $\mathbb{Z}/n\mathbb{Z}$

Ici, n d'esignera un entier > 0.

PROPOSITION 1.1.1. Les sous-groupes de \mathbb{Z} sont de la forme $a\mathbb{Z}$ où $a \in \mathbb{Z}$.

Dém : On a déjà $\forall a \in \mathbb{Z}$, $a\mathbb{Z} = \{ak, k \in \mathbb{Z}\}$ qui est un sous-groupe de \mathbb{Z} . Soit G un sous-groupe de \mathbb{Z} , si $G \neq \{0\}$ alors on considère $G \cap \mathbb{N}^*$ qui est non vide \mathbb{Z} et qui possède un plus petit élément a > 0.

- G contient alors tous les éléments de la forme a.n où $n \in \mathbb{Z}$ (immédiat, par récurrence) soit $a\mathbb{Z} \subset G$.
- Si $x \in G$ alors on fait la division euclidienne de x par a: x = a.n + r où $0 \le r < a$. Or $r = x a.n \in G$ donc r = 0 par définition de a. On a donc $G \subset a\mathbb{Z}$.

Conclusion : par double inclusion, on a prouvé que $G=a\mathbb{Z}$ (avec éventuellement a=0)

Définition 1.1.1. Congruence

Soient $(a,b) \in \mathbb{Z}^2$ et n un entier > 0, on dit que a est congru à b modulo n ssi_{déf} n divise a-b.

On écrira alors $a \equiv b \ [n]$ ou $a \equiv b \ \text{mod } n$.

Proposition 1.1.2. Propriétés de la congruence

- La relation modulo n réalise une partition de \mathbb{Z} en n sous-ensembles : pour chaque élément p de \mathbb{Z} on note \overline{p} l'ensemble des éléments de \mathbb{Z} qui ont le même reste dans la division par n (i.e. $q \in \overline{p} \Leftrightarrow n|p-q$ soit $\overline{p} = p + n\mathbb{Z}$).
- Cette relation est compatible avec l'addition i.e. Soit $(a, b, c) \in \mathbb{Z}^3$, si $a \equiv b \mod n$ alors $a + c \equiv b + c \mod n$.

 $^{^{1}}$ On sait qu'il existe $x\neq 0$ dans G, si x<0 alors $-x\in G$

Dém : On a deux propriétés à démontrer.

- Soit $\overline{p} = \{p + k.n, k \in \mathbb{Z}\}$ que l'on note $p + n\mathbb{Z}$ en notation ensembliste. Montrons que $\{\overline{p}, p \in [0, n-1]\}$ est une partition de \mathbb{Z} :
 - Si $x \in \mathbb{Z}$ alors $x \in \overline{p}$ où p est le reste (qui appartient à [0, n-1]) de la division euclidienne de x par n donc $\bigcup_{p \in [0, n-1]} \overline{p} = \mathbb{Z}$.
 - Si $p \neq p'$ alors, en supposant par exemple que $0 \leqslant p' , si <math>x \in \overline{p} \cap \overline{p'}$ on a x = p + k.n = p' + k'.n soit p p' = (k' k).n or $p p' \in [1, n-1]$ donc k' k = 0 ce qui est impossible donc $\overline{p} \cap \overline{p'} = \emptyset$
- La deuxième propriété est immédiate : si $b = a + k \cdot n$ alors $b + c = a + c + k \cdot n$

Définition 1.1.2. $\mathbb{Z}/n\mathbb{Z}$

 $\mathbb{Z}/n\mathbb{Z}$ désigne l'ensemble $\{\overline{0},\overline{1},\ldots,\overline{n-1}\}.$

Théorème 1.1. Groupe $\mathbb{Z}/n\mathbb{Z}$

On définit l'addition dans $\mathbb{Z}/n\mathbb{Z}$ par $\overline{a+b} = \overline{a+b}$

(soit $(a + n\mathbb{Z}) + (b + n\mathbb{Z}) = a + b + n\mathbb{Z}$).

L'ensemble $\mathbb{Z}/n\mathbb{Z}$ muni de l'addition est un groupe additif.

Dém:

- On prouve d'abord que $\overline{a+b}$ est indépendant du représentant choisi : en effet, soit $\underline{a'} \in \overline{a}$, $b' \in \overline{b}$ alors a' = a+k.n, b' = b+k'.n donc a'+b' = a+b+(k+k').n soit $\overline{a'+b'} = \overline{a+b}$.
- La loi \pm ainsi définie est bien une loi de composition interne.
- Montrons l'associativité : $(\overline{a+b})\overline{+c} = \overline{a+b+c} = \overline{a+b+c}$ et, par symétrie, $\overline{a+(\overline{b+c})} = \overline{a+b+c}$ d'où l'égalité.
- L'élément neutre est $\overline{0}$ et le symétrique de \overline{a} est $\overline{-a} = \overline{n-a}$.
- \bullet \mp est évidemment commutative.
- $\mathbb{Z}/n\mathbb{Z}$ muni de cette loi est un groupe additif

Par la suite, lorsqu'il n'y aura pas de confusion possible, on notera + à la place de $\overline{+}$.

Remarque 1.1.1. Si $p \in \mathbb{Z}$ alors $p\overline{a} = \overline{pa}$. L'application qui à $p \in \mathbb{Z}$ fait correspondre \overline{p} est un morphisme de groupe appelé morphisme canonique de \mathbb{Z} sur $\mathbb{Z}/n\mathbb{Z}$.

Dém : On définit $p\overline{a} = \underline{\overline{a} + \dots + \overline{a}}$ si p > 0 et $p\overline{a} = \underline{-\overline{a} - \dots - \overline{a}}$ si p < 0. On a bien

$$(p+p')\overline{a} = \overline{(p+p')a} = \overline{pa+p'a}$$

= $\overline{pa} + \overline{p'a} = \overline{pa} + \overline{p'a}$

donc l'application $p \in \mathbb{Z} \mapsto p\overline{a}$ est un morphisme de groupe

²On a montré l'inclusion $\mathbb{Z} \subset \bigcup_{p \in \llbracket 0, n-1 \rrbracket} \overline{p}$, l'inclusion dans l'autre sens étant immédiate.

1.1. GROUPES 173

Proposition 1.1.3.

Si $n = \overline{a_p a_{p-1} \dots a_0}$ est l'écriture de n en base 10 alors congruence modulo $9 : \overline{a_p a_{p-1} \dots a_0} \equiv a_p + a_{p-1} + \dots + a_0 \mod 9$. congruence modulo $11 : \overline{a_p a_{p-1} \dots a_0} \equiv (-1)^p a_p + (-1)^{p-1} a_{p-1} + \dots + a_0 \mod 11$.

Dém : Cette démonstration peut se faire en utilisant la structure d'anneau de $\mathbb{Z}/n\mathbb{Z}$ que l'on verra au 1.2.2.

• On a $10-1=9\equiv 0 \mod 9$, $10^2-1=99\equiv 0 \mod 9$, plus généralement $10^p-1=\underbrace{\overline{99\ldots 9}}_{p \text{ fois}}=9\times \overline{11\ldots 1}\equiv 0 \mod 9$ (écriture en base 10). On en déduit que $a_k\times 10^k\equiv a_k \mod 9$ d'où

$$n = \sum_{k=0}^{p} a_k \times 10^k \equiv \sum_{k=0}^{p} a_k \mod 9.$$

• Pour la congruence modulo $11: 10^p - (-1)^p = (10+1)[10^{p-1} + \cdots + (-1)^{p-1}]$ alors $10^p \equiv (-1)^p \mod 11$ et on procède comme ci-dessus

Théorème 1.2. Générateurs du groupe $\mathbb{Z}/n\mathbb{Z}$ \overline{a} engendre $\mathbb{Z}/n\mathbb{Z}$ ssi $a \wedge n = 1$.

Dém : On dit que \overline{a} engendre $\mathbb{Z}/n\mathbb{Z}$ lorsque le groupe engendré par \overline{a} vaut $\mathbb{Z}/n\mathbb{Z}$ soit $\{p\overline{a}, p \in \mathbb{Z}\} = \mathbb{Z}/n\mathbb{Z}$.

- \Rightarrow Si \overline{a} engendre $\mathbb{Z}/n\mathbb{Z}$ alors, comme $\overline{1} \in \mathbb{Z}/n\mathbb{Z}$, il existe p tel que $p\overline{a} = \overline{1}$ ce qui se traduit par pa = 1 + kn ou bien pa kn = 1, et, par Bézout, $a \wedge n = 1$.
- \Leftarrow En fait, si $a \land n = 1$ alors $\underline{pa} = 1 + \underline{kn}$ (en reprenant ce qui a été fait ci-dessus) donc $\overline{q} = q\overline{1} = q\overline{pa} = \overline{qpa}$ d'où \overline{a} engendre $\mathbb{Z}/n\mathbb{Z}$

Si G est un groupe, $a \in G$, on a défini dans le cours de première année le morphisme canonique de \mathbb{Z} dans le groupe engendré par a ($k \mapsto ka$ ou $k \mapsto a^k$ selon la notation).

PROPOSITION 1.1.4. Le noyau du morphisme canonique $\varphi_a : k \mapsto a^k$ est un sousgroupe de \mathbb{Z} (donc de la forme $p\mathbb{Z}$).

L'image est le groupe engendré par a noté (a).

Attention aux lois qui sont notées multiplicativement dans G et additivement dans \mathbb{Z} .

Dém : Il suffit de prouver que, d'une manière générale, le noyau d'un morphisme de groupe est un sous-groupe :

soit $f: G \to G'$ un morphisme de groupe, $H = \operatorname{Ker} f$, . et * étant les lois dans G et G' (notées multiplicativement), e et e' étant les éléments neutres de G et G'.

- $e \in H$ donc $H \neq \emptyset$,
- si x et x' sont dans H alors f(x.x') = f(x) * f(x') = e' * e' = e' donc $x.x' \in H$,
- si $x \in H$ alors $f(x^{-1}) = f(x)^{-1} = e'$ donc $x^{-1} \in H$.

Conclusion : H est bien un sous-groupe de G.

Pour l'image : c'est immédiat par définition, en effet, tout élément de l'image de φ_a s'écrit a^k

DÉFINITION 1.1.3. Groupe monogène, groupe cyclique

Soit G un groupe, on dit que G est monogène $ssi_{d\acute{e}f}$ G est engendré par un seul élément.

Si G est monogène et fini alors on dit qu'il est cyclique.

Théorème 1.3. Soit G un groupe monogène engendré par a alors

si Ker $\varphi_a = \{0\}$, G est isomorphe à \mathbb{Z} ,

si Ker $\varphi_a = n\mathbb{Z}$, G est isomorphe à $\mathbb{Z}/n\mathbb{Z}$.

Dém : Si Ker $\varphi_a = \{0\}$ alors φ_a est injective, en effet, $\varphi_a(x) = \varphi_a(x')$ entraı̂ne que $\varphi_a(x'-x) = e$ (élément neutre de G) soit x'-x=0. Comme par définition φ_a est surjective, on en déduit qu'elle est bijective donc est un isomorphisme.

Si Ker $\varphi_a = n\mathbb{Z}$ alors on définit $\overline{\varphi}_a : \overline{k} \mapsto a^k$ et on prouve que $\overline{\varphi}_a$ est un isomorphisme de G sur $\mathbb{Z}/n\mathbb{Z}$:

- Par définition, on sait que $a^n = e$ (e est toujours l'élément neutre de G) donc, si $k' \in \overline{k}$, alors $a^{k'} = a^{k+nu} = a^k.a^{nu} = a^k.(a^n)^u = a^k$ grâce aux propriétés des puissances, par conséquent $\overline{\varphi}_a$ est bien définie.
- $\overline{\varphi_a}$ est un morphisme de groupe : en effet

$$\overline{\varphi_a}(\overline{k} + \overline{k'}) = \overline{\varphi_a}(\overline{k + k'}) = \varphi_a(k + k') = a^{k+k'} = a^k a^{k'}$$
$$= \varphi_a(k)\varphi_a(k') = \overline{\varphi_a}(k)\overline{\varphi_a}(k').$$

• $\overline{\varphi_a}$ est injective : si $\overline{\varphi_a}(\overline{k}) = e$ alors $a^k = e$ soit $k \in \text{Ker } \varphi_a \text{ donc } k \in n\mathbb{Z}$ et par conséquent $\overline{k} = \overline{0}$.

Finalement, comme $\overline{\varphi_a}$ est surjective par définition, $\overline{\varphi_a}$ est un isomorphisme

Remarque 1.1.2. Une conséquence du théorème précédent est que si G est cyclique d'ordre n alors il est isomorphe à $\mathbb{Z}/n\mathbb{Z}$. C'est le cas en particulier du groupe multiplicatif \mathbb{U}_n des racines $n^{i \`{e}mes}$ de l'unité.

Question: Montrer que tout sous-groupe H d'un groupe monogène G=(a) est monogène (considérer $\{n \in \mathbb{Z} \mid a^n \in H\}$).

1.1.2 Groupes

Définition 1.1.4. **Produit de deux groupes**

Si G_1 et G_2 sont deux groupes, on définit sur $G_1 \times G_2$ une structure de groupe en posant

$$(x_1, x_2).(y_1, y_2) = (x_1y_1, x_2y_2).$$

avec une notation multiplicative.

On prouve que, muni de cette loi, $G_1 \times G_2$ est un groupe :

1.1. GROUPES 175

- La loi est interne (par définition),
- elle est associative :

$$[(x_1, x_2).(y_1, y_2)].(z_1, z_2) = (x_1y_1, x_2y_2).(z_1, z_2) = (x_1y_1z_1, x_2y_2z_2)$$
$$= (x_1, x_2).[(y_1, y_2).(z_1, z_2)]$$

par symétrie,

- l'inverse de (x_1, x_2) est (x_1^{-1}, x_2^{-1}) ,
- l'élément neutre est donné par (e_1, e_2) où e_1 et e_2 sont les éléments neutres de G_1 et G_2

Proposition 1.1.5. L'intersection d'une famille quelconque de sous-groupes d'un groupe G est un sous-groupe de G.

Dém : Soient $(H_i)_{i\in I}$ une famille de sous-groupes de G, on pose $H=\bigcap_{i\in I}H_i$ et on va montrer que H est un sous-groupe de G :

- $e \in H$ (où e est l'élément neutre de G) donc $H \neq \emptyset$,
- si $(x,y) \in H^2$ alors $\forall i \in I$, $(x,y) \in H_i$ donc $xy^{-1} \in H_i$ par conséquent $xy^{-1} \in H$.

Conclusion : $H = \bigcap_{i \in I} H_i$ est bien un sous-groupe de G

Si A est une partie de G alors l'ensemble des sous-groupes de G qui contiennent A est non vide et leur intersection, vu la propriété précédente, est non vide. On peut donc poser la définition suivante :

Définition 1.1.5. Groupe engendré par une partie

C'est l'intersection de tous les sous-groupes qui contiennent cette partie : si A est cette partie, on notera gr(A) le groupe engendré par A.

C'est aussi le plus petit sous-groupe de G qui contient A.

Proposition 1.1.6. Soit A une partie non vide de G un groupe alors

$$gr(A) = \{x \in G \mid \exists p \in \mathbb{N}, \ \exists (a_1, a_2, \dots, a_p) \in (A \cup A^{-1})^p \mid x = a_1 a_2 \dots a_p\}$$

 $(A^{-1}$ désignant l'ensemble des inverses des éléments de A).

Dém : Soit $H = \{a_1 a_2 \dots a_p, \text{ où } a_i \in A \cup A^{-1}\}.$

- \bullet Montrons que H est un sous-groupe de G:
 - $-A \subset H$ donc H est non vide,
 - si $a=a_1a_2\ldots a_p\in H$ et $b=b_1b_2\ldots b_q\in H$ alors on a immédiatement $ab^{-1}=a_1a_2\ldots a_pb_q^{-1}\ldots b_2^{-1}b_1^{-1}\in H.$

H est un donc un sous-groupe de G et comme $H \supset A$ alors $H \supset gr(A)$ par définition du groupe engendré.

• On prouve par une récurrence immédiate sur p que, si $a_i \in A \cup A^{-1}$ alors $a_1 \dots a_p \in gr(A)$ donc $H \subset gr(A)$.

Conclusion : on a H = gr(A) par double inclusion

DÉFINITION 1.1.6. Partie génératrice d'un groupe

On dit que la partie A engendre G ssi_{déf} gr(A) = G.

S'il existe une famille finie qui engendre G alors on dit que G est de type fini.

Questions:

- (i) Si H est un sous-groupe de G, on définit $f_a(H) = \{axa^{-1} \text{ où } x \in H\}$. Montrer que $f_a(H)$ est un sous-groupe de G. Soit H le groupe des rotations de centre O du plan affine euclidien, a l'affinité d'axe Ox, de direction Oy, de rapport m. Soit M un point du plan, déterminer l'ensemble des points M' du plan tels que $\exists g \in f_a(H)$ vérifiant M' = g(M).
- (ii) Montrer que le groupe des isométries du carré ABCD du plan où A(1,1), B(-1,1), C(-1,-1) et D(1,-1) est engendré par la symétrie par rapport à Ox et la rotation d'angle $\frac{\pi}{2}$ de centre O.
- (iii) Montrer que $GL_2(\mathbb{K})$ est engendré par les matrices $\begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}$, $\begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$, $\begin{pmatrix} 1 & 0 \\ 0 & a \end{pmatrix}$, $a \in \mathbb{K}$.

1.2 Anneaux et corps

1.2.1 Idéaux d'un anneau commutatif

Définition 1.2.1. Morphisme d'anneaux, isomorphisme

Soient (A, +, .) et (B, +, .) deux anneaux et $f: A \to B$.

On dit que f est un morphisme d'anneaux ssi_{déf} f est compatible avec les lois + et . et f(1) = 1.

On dit que f est un isomorphisme d'anneaux $ssi_{d\acute{e}f}$ f est un morphisme d'anneaux et f est bijective.

Exemple: L'application qui a un élément a de \mathbb{R} fait correspondre la matrice aI_n est un morphisme d'anneaux de $(\mathbb{R}, +, .)$ dans $(\mathcal{M}_n(\mathbb{R}), +, .)$.

PROPOSITION 1.2.1. Si f est un isomorphisme d'anneaux alors f^{-1} est aussi un isomorphisme d'anneaux.

Dém : $f:A\to B$ étant bijective, $f^{-1}:B\to A$ est bien définie. Montrons que f^{-1} est un isomorphisme d'anneaux :

• Compatibilité avec l'addition :

$$f([f^{-1}(b_1 + b_2)]) = b_1 + b_2 = f[f^{-1}(b_1)] + f[f^{-1}(b_2)]$$

= $f[f^{-1}(b_1) + f^{-1}(b_2)]$ car f est un morphisme d'anneaux

donc, comme f est bijective, $f^{-1}(b_1 + b_2) = f^{-1}(b_1) + f^{-1}(b_2)$.

• La compatibilité avec la multiplication se fait de la même manière.

• $f[f^{-1}(1_B)] = 1_B$ or $f(1_A) = 1_B$ et f est injective donc $f^{-1}(1_B) = 1_A$.

Conclusion : f^{-1} est bien un isomorphisme d'anneaux.

DÉFINITION 1.2.2. Noyau et image d'un morphisme d'anneaux Si f est un morphisme de A dans B, on appelle image de f l'ensemble $\operatorname{Im} f = f(A)$ et noyau de f l'ensemble $\operatorname{Ker} f = f^{-1}(0)$.

DÉFINITION 1.2.3. *Idéal*

Soit A un anneau commutatif et $\mathcal{I} \subset A$, on dit que \mathcal{I} est un idéal de A ssi_{déf}

- (i) $(\mathcal{I}, +)$ est un sous-groupe de (A, +).
- (ii) \mathcal{I} est absorbant (i.e. $\forall a \in A, \forall \alpha \in \mathcal{I}, \alpha a \in \mathcal{I}$).

Exemples: $\mathcal{I} = \{0\}, \mathcal{I} = A, \mathcal{I} = xA$ (voir démonstration ci-dessous).

Proposition 1.2.2. L'intersection d'une famille quelconque d'idéaux est un idéal.

Dém : Soient $(\mathcal{I}_i)_{i\in I}$ une famille d'idéaux de A, on pose $\mathcal{I} = \bigcap_{i\in I} \mathcal{I}_i$ et on va montrer que \mathcal{I} est un idéal de A :

- $0 \in \mathcal{I} \text{ donc } \mathcal{I} \neq \emptyset$,
- si $(x,y) \in \mathcal{I}^2$ alors $\forall i \in I, (x,y) \in \mathcal{I}_i$ donc $x-y \in \mathcal{I}_i$ par conséquent $x-y \in \mathcal{I}$,
- si $\alpha \in A$ et $x \in \mathcal{I}$ alors, $\forall i \in I$, $x \in \mathcal{I}_i$ donc $\alpha x \in \mathcal{I}_i$ soit $\alpha x \in \mathcal{I}$.

Conclusion : $\mathcal{I} = \bigcap_{i \in I} \mathcal{I}_i$ est bien un idéal de $A \blacksquare$

PROPOSITION 1.2.3. Idéal engendré par un élément $Si \ x \in A \ alors \ Ax = xA \ est \ un \ idéal, \ c'est l'idéal engendré par x \ (parfois \ noté \ (x)).$

Dém : Ax est bien un idéal (vérification immédiate). Notons \mathcal{I}_x l'idéal engendré par x i.e. l'intersection des idéaux qui contiennent x.

- Alors $\forall \alpha \in A, \ \alpha x \in \mathcal{I}_x \ \text{donc} \ Ax \subset \mathcal{I}_x$.
- Ax est un idéal qui contient x donc, par définition de \mathcal{I}_x , $\mathcal{I}_x \subset Ax$.

Conclusion: on a $\mathcal{I}_x = Ax$ par double inclusion et on a la remarque suivante

Remarque 1.2.1. En fait, l'idéal engendré par un élément est l'intersection des idéaux qui contiennent cet élément.

PROPOSITION 1.2.4. Si f est un morphisme d'anneaux de A dans B alors Ker f est un idéal de A et f(A) est un sous-anneau de B.

Dém : On sait déjà que Ker f est un sous-groupe de A et il est facile de vérifier que f(A) est un sous-groupe de B.

- Si $\alpha \in A$ et $x \in \text{Ker } f$ alors $f(\alpha x) = f(\alpha)f(x) = 0$ donc $\alpha x \in \text{Ker } f$, Ker f est bien un idéal de A.
- $f(1_A) = 1_B$ donc $1_B \in f(A)$ et, si $b_1 = f(a_1)$, $b_2 = f(a_2)$ sont dans f(A) alors $b_1b_2 = f(a_1)f(a_2) = f(a_1a_2) \in f(A)$ donc f(A) est un sous-anneau de $B \blacksquare$

DÉFINITION 1.2.4. Divisibilité dans un anneau intègre

Soit A un anneau intègre, on dit que x divise y (noté x|y) ssi_{déf} il existe $z \in A$ tel que y = xz.

Proposition 1.2.5. On a l'équivalence suivante : x|y ssi $Ay \subset Ax$.

Dém : L'équivalence est immédiate :

- Si x|y alors y = xz donc $\alpha y = \alpha zx$ pour tout $\alpha \in A$ soit $Ay \subset Ax$.
- Si $Ay \subset Ax$ alors $y \in Ax$ donc il existe $z \in A$ tel que y = xz

Questions:

- (i) Soit $f:(a,b)\in\mathbb{Z}^2\mapsto a+ib\sqrt{3}\in\mathbb{C}$. f est-il un morphisme d'anneaux?
- (ii) Si \mathcal{I} et \mathcal{J} sont deux idéaux de A, on définit

$$\mathcal{I} + \mathcal{J} = \{ x \in A \mid \exists (a, b) \in \mathcal{I} \times \mathcal{J}, \ x = a + b \},\$$

$$\mathcal{I}.\mathcal{J} = \{x \in A \mid \exists n \in \mathbb{N}, \ \exists (a_i, b_i) \in \mathcal{I} \times \mathcal{J}, \ x = \sum_{i=1}^n a_i b_i \}.$$

Montrer que $\mathcal{I} + \mathcal{J}$ et $\mathcal{I}.\mathcal{J}$ sont des idéaux. A-t-on $\mathcal{I}.\mathcal{J} = \mathcal{I} \cap \mathcal{J}$?

1.2.2 Idéaux de \mathbb{Z} , anneau $\mathbb{Z}/n\mathbb{Z}$

Théorème 1.4. **Idéaux de** Z

Les idéaux de \mathbb{Z} sont de la forme $a\mathbb{Z}$ (on dit que \mathbb{Z} est un anneau principal).

Dém : Soit \mathcal{I} un idéal de \mathbb{Z} , \mathcal{I} est un sous-groupe de \mathbb{Z} donc il existe $a \in \mathbb{Z}$ tel que $\mathcal{I} = a\mathbb{Z}$. Tous les idéaux de \mathbb{Z} sont donc de la forme $a\mathbb{Z}$.

On sait que $\forall a \in \mathbb{Z}$, $a\mathbb{Z}$ est un idéal donc on peut conclure

Proposition 1.2.6. Caractérisation du P.G.C.D. et du P.P.C.M.

- (i) $(d = a \wedge b) \Leftrightarrow (a\mathbb{Z} + b\mathbb{Z} = d\mathbb{Z}, d > 0).$
- (ii) $(m = a \vee b) \Leftrightarrow (a\mathbb{Z} \cap b\mathbb{Z} = m\mathbb{Z}, m > 0).$

Dém:

(i) (\Rightarrow) D'après le théorème de Bézout, on sait qu'il existe u et v dans \mathbb{Z} tels que d = au + bv. On a donc $\forall k \in \mathbb{Z}$, $d.k \in a\mathbb{Z} + b\mathbb{Z} = \{au' + bv', (u', v') \in \mathbb{Z}^2\}$ et par conséquent $d\mathbb{Z} \subset a\mathbb{Z} + b\mathbb{Z}$.

Inclusion dans l'autre sens : d|a et $d|b \Rightarrow a\mathbb{Z} \subset d\mathbb{Z}$ et $b\mathbb{Z} \subset d\mathbb{Z}$ (propriété de la divisibilité) par conséquent $a\mathbb{Z} + b\mathbb{Z} \subset d\mathbb{Z}$ car $d\mathbb{Z}$ est un sous-groupe de \mathbb{Z} . On a donc $d\mathbb{Z} = a\mathbb{Z} + b\mathbb{Z}$.

 (\Leftarrow) si $d\mathbb{Z} = a\mathbb{Z} + b\mathbb{Z}$, soit $d' = a \wedge b$, on vient de prouver que $d'\mathbb{Z} = a\mathbb{Z} + b\mathbb{Z}$ donc $d'\mathbb{Z} = d\mathbb{Z}$. On en déduit que d|d' et d'|d (toujours les propriétés de la divisibilité) soit d = k'd' et d' = kd. Or d' > 0 et d > 0 donc d = k'kd soit k'k = 1 avec k' et k positifs soit k = k' = 1.

Conclusion : on a bien d = d' i.e. $d = a \wedge b$.

(ii) (\Rightarrow) On a m = ka = k'b donc $m \in a\mathbb{Z} \cap b\mathbb{Z}$ d'où $m\mathbb{Z} \subset a\mathbb{Z} \cap b\mathbb{Z}$ car $a\mathbb{Z} \cap b\mathbb{Z}$ est un sous-groupe de \mathbb{Z} .

Inclusion dans l'autre sens : $a\mathbb{Z} \cap b\mathbb{Z} = m'\mathbb{Z}$ ($a\mathbb{Z} \cap b\mathbb{Z}$ est un idéal donc il est engendré par un élément $m' \in \mathbb{Z}$). m' est un multiple commun à a et b. Or $m\mathbb{Z} \subset m'\mathbb{Z}$ i.e. m = km' et $m' \geqslant m$ car m est le plus petit commun multiple de a et b donc k = 1 soit m = m'.

(⇐) Si $m\mathbb{Z} = a\mathbb{Z} \cap b\mathbb{Z}$, soit $m' = a \vee b$, on vient de prouver que $m'\mathbb{Z} = a\mathbb{Z} \cap b\mathbb{Z}$ donc $m'\mathbb{Z} = m\mathbb{Z}$ d'où m = m' car on a supposé m > 0 (même argument que pour le P.G.C.D.)

Exemples illustratifs:

- (i) Théorème de Bézout : si $a \wedge b = 1$ alors $a\mathbb{Z} + b\mathbb{Z} = \mathbb{Z}$ (ici, on a d = 1).
- (ii) Théorème de Gauss : si $bc\mathbb{Z} \subset a\mathbb{Z}$ et $a\mathbb{Z} + b\mathbb{Z} = \mathbb{Z}$ alors $c\mathbb{Z} \subset a\mathbb{Z}$.

Proposition 1.2.7. Si $a \equiv b \mod n$ et $c \equiv d \mod n$ alors $ac \equiv bd \mod n$.

Dém : a = b + kn, c = d + k'n donc ac = bd + (kd + k'b + kk'n)n ce qui signifie que $ac \equiv bd \mod n$

Théorème 1.5. Grâce à la propriété précédente, $(\mathbb{Z}/n\mathbb{Z}, +, .)$ est un anneau.

Dém : On sait déjà que $(\mathbb{Z}/n\mathbb{Z},+)$ est un groupe et $\overline{a}.\overline{b}=\overline{ab}$ est indépendant du représentant choisi vu la proposition précédente.

On vérifie alors que $\mathbb{Z}/n\mathbb{Z}$ est un anneau :

- La loi . est une loi interne par définition,
- elle est associative :

$$(\overline{a}.\overline{b}).\overline{c} = \overline{ab}.\overline{c} = \overline{abc}$$

= $\overline{a}.(\overline{b}.\overline{c})$ par symétrie

- $\overline{1}$ est l'élément neutre pour la multiplication,
- . est distributive par rapport à + (à droite et à gauche), là aussi, la vérification est immédiate

PROPOSITION 1.2.8. L'application $a \in \mathbb{Z} \mapsto \bar{a} \in \mathbb{Z}/n\mathbb{Z}$ est un morphisme d'anneaux appelé morphisme canonique.

Dém : On sait déjà que cette application est un morphisme de groupes, on la note φ . On vérifie alors que $\varphi(1) = \overline{1}$ élément neutre pour la multiplication dans $\mathbb{Z}/n\mathbb{Z}$ puis que $\varphi(ab) = \overline{ab} = \varphi(a)\varphi(b)$

Remarque 1.2.2. Il n'existe qu'un seul morphisme de \mathbb{Z} dans un anneau A, en effet $\varphi(1) = 1_A$ permet de définir sans ambiguïté φ .

Dém : On pose en effet $\varphi(n)=n.1_A=\underbrace{1_A+\cdots+1_A}_{n \text{ fois}}$ si $n>0, \ \varphi(0)=0$ et

 $\varphi(n) = (-n)(-1_A)$ si n < 0. φ est bien un morphisme d'anneaux.

Si ψ est un autre morphisme d'anneaux de \mathbb{Z} dans A alors $\psi(1) = 1_A$ puis, par récurrence sur n, $\psi(n) = \varphi(n)$ si n > 0. Finalement $\psi(n) = \varphi(n)$ pour tout $n \in \mathbb{Z}$ ce qui permet de conclure à l'unicité

Attention à ne pas dire ici qu'il y a unicité par construction car c'est insuffisant, il n'y a peut-être pas unicité de la construction.

Théorème 1.6. Factorisation du morphisme de $\mathbb Z$ dans A

Si φ est le morphisme canonique de \mathbb{Z} dans un anneau A, $\operatorname{Ker} \varphi = n\mathbb{Z}$ son noyau alors il existe un unique isomorphisme $\overline{\varphi}$ de $\mathbb{Z}/n\mathbb{Z}$ dans $\varphi(\mathbb{Z}) \subset A$ telle que $\overline{\varphi}(\overline{a}) = \varphi(a)$.

Dém : $\overline{\varphi}$ est bien définie (la valeur de $\overline{\varphi}(\overline{a})$ ne dépend pas du représentant choisi), $\overline{\varphi}$ est bien un isomorphisme de groupe de $\mathbb{Z}/n\mathbb{Z}$ sur $\varphi(\mathbb{Z})$ cf. Th 1.3 page 174 3 et on a $\overline{\varphi}(1) = \varphi(1) = 1_A$,

$$\overline{\varphi}(\overline{a}.\overline{b}) = \overline{\varphi}(\overline{a}.\overline{b}) = \varphi(a.b) = \varphi(a).\varphi(b)$$
$$= \overline{\varphi}(\overline{a}).\overline{\varphi}(\overline{b})$$

ce qui achève la démonstration

Définition 1.2.5. Caractéristique d'un corps

Si \mathbb{K} est un corps, φ l'unique morphisme que l'on peut définir de \mathbb{Z} dans \mathbb{K} et $p\mathbb{Z}$ le noyau de φ alors p est appelé caractéristique de \mathbb{K} .

Remarque 1.2.3.

- (i) La caractéristique de $\mathbb{Z}/p\mathbb{Z}$ est p.
 - Dém : Immédiat avec le théorème précédent, le noyau de $\varphi: \mathbb{Z} \to \mathbb{Z}/p\mathbb{Z}$ est $p\mathbb{Z}$
- (ii) La caractéristique d'un corps est un nombre premier ou 0 (c'est la même chose pour un anneau intègre).

Dém : Par l'absurde, si p = qr avec q > 1 et r > 1 où p est la caractéristique du corps en question alors $p1_{\mathbb{K}} = qr1_{\mathbb{K}} = (q1_{\mathbb{K}})(r1_{\mathbb{K}}) = 0$ avec $q1_{\mathbb{K}} \neq 0$ et $r1_{\mathbb{K}} \neq 0$ ce qui est impossible, donc p est bien premier (et c'est effectivement encore vrai dans un anneau intègre)

Proposition 1.2.9. *Indicatrice d'Euler*

l'ensemble des éléments inversibles de $\mathbb{Z}/n\mathbb{Z}$ est $\{\bar{a}, a \wedge n = 1\}$. On appelle indicatrice d'Euler le nombre d'éléments inversibles dans $\mathbb{Z}/n\mathbb{Z}$.

Dém : Immédiat avec l'égalité de Bézout : en effet on utilise la démonstration du théorème 1.2 et on a équivalence entre \overline{a} engendre $\mathbb{Z}/n\mathbb{Z}$ et \overline{a} inversible

Cette dernière fonction joue un grand rôle en arithmétique et en codage informatique.

³énoncé en notation multiplicative pour la loi de groupe, utilisé ici en notation additive

THÉORÈME 1.7. $\mathbb{Z}/p\mathbb{Z}$ est un corps ssi p est premier.

Dém : On sait déjà que si $\mathbb{Z}/p\mathbb{Z}$ est un corps alors p est premier (cf. remarque 1.2.3).

Réciproque : si p est premier alors, grâce à la proposition 1.2.9, tous les éléments de $\mathbb{Z}/p\mathbb{Z}\setminus\{0\}$ sont inversibles donc $\mathbb{Z}/p\mathbb{Z}$ est un corps \blacksquare Questions :

- (i) Montrer que $10^6 \equiv 1$ [7], en déduire que $\sum\limits_{k=1}^{12} 10^{10^k} \equiv -1$ [7].
- (ii) Montrer que 121 ne divise jamais $n^2 + 3n + 5$.
- (iii) Petit théorème de Fermat : si p est un nombre premier, montrer que, pour tout entier k, on a $k^p \equiv k$ [p]. En déduire que si $n \equiv 1[p-1]$ alors $k^n \equiv k$ [p].
- (iv) Théorème de Wilson : montrer l'équivalence $(p-1)!+1\equiv 0$ $[p]\Leftrightarrow p$ premier.

1.2.3 Application à la cryptographie

Théorème 1.8. Théorème Chinois

Soient p et q deux entiers premiers entre eux et $(y, z) \in \mathbb{Z}^2$ alors il existe un entier $x \equiv y \mod p$

 $x \text{ dans } \mathbb{Z} \text{ tel que } \begin{cases} x \equiv y \mod p \\ x \equiv z \mod q \end{cases}$

Toutes les solutions de ce système sont congrues modulo pq.

Dém : Soit u, v tels que up + vq = 1 alors y - z = up(y - z) + vq(y - z) soit y + up(z - y) = z + vq(y - z). Il suffit alors de prendre x = y + up(z - y) = z + vq(y - z). Si x et x' sont deux solutions alors p|x - x' et q|x - x' et donc, en vertu du théorème de Gauss, comme p et q sont premiers entre-eux, pq|x - x' soit $x - x' \equiv 0 \mod pq$. Conclusion : toutes les solutions sont congrues modulo pq

COROLLAIRE 1.9.

Si p et q deux entiers premiers entre eux alors il existe un isomorphisme d'anneaux de $\mathbb{Z}/pq\mathbb{Z}$ sur $\mathbb{Z}/p\mathbb{Z}\times\mathbb{Z}/q\mathbb{Z}$ (muni de la structure produit).

Dém : On définit la structure produit dans un anneau de la manière suivante : si A_1 et A_2 sont deux anneaux alors $(x_1,x_2)+(y_1,y_2)=(x_1+y_1,x_2+y_2)$ (loi de groupe produit) et $(x_1,y_1)\times(x_2,y_2)=(x_1y_1,x_2,y_2)$ permettent de munir $A_1\times A_2$ d'une structure d'anneau $((1_{A_1},1_{A_2})$ étant le neutre pour la multiplication).

On prend alors $\Phi: x \in \mathbb{Z} \mapsto (x \mod p, x \mod q)$. $\Phi(x) = 0$ ssi p|x et q|x ce qui est encore équivalent à pq|x donc $\operatorname{Ker} \Phi = pq\mathbb{Z}$. Φ est surjective grâce au théorème précédent.

(Si $(y, z) \in \mathbb{Z}/p\mathbb{Z} \times \mathbb{Z}/q\mathbb{Z}$ alors on sait qu'il existe $x \in \mathbb{Z}$ tel que $x \equiv y \mod p$ et $x \equiv z \mod q$ donc $\Phi(x) = (\overline{y}, \overline{z})$).

D'après le théorème 1.6 page 180, $\overline{\Phi}$ définie par $\overline{\Phi}(\overline{a}) = \Phi(a)$ est un isomorphisme d'anneaux

Remarque~1.2.4.

(i) On peut, grâce au dernier corollaire, en déduire l'expression de l'indicatrice d'Euler φ(pq) égale au nombre d'éléments inversibles dans l'anneau Z/pqZ.

$$\varphi(pq) = pq\left(1 - \frac{1}{p}\right)\left(1 - \frac{1}{q}\right)$$
 si p et q sont des nombres premiers.

Dém : comme $\overline{\Phi}$ est un isomorphisme de $\mathbb{Z}/pq\mathbb{Z}$ sur $\mathbb{Z}/p\mathbb{Z} \times \mathbb{Z}/q\mathbb{Z}$ alors $\overline{\Phi}$ transforme tout élément inversible de $\mathbb{Z}/pq\mathbb{Z}$ en un élément inversible de $\mathbb{Z}/p\mathbb{Z} \times \mathbb{Z}/q\mathbb{Z}$. Il en est de même de $\overline{\Phi}^{-1}$ i.e. $\overline{\Phi}$ réalise une bijection de $U(\mathbb{Z}/pq\mathbb{Z})$ sur $U(\mathbb{Z}/p\mathbb{Z} \times \mathbb{Z}/q\mathbb{Z})$ (U(A) désignant l'ensemble des éléments inversibles d'un anneau A). On a donc égalité des cardinaux.

 $Or(\overline{y}, \overline{z}) \in \mathbb{Z}/p\mathbb{Z} \times \mathbb{Z}/q\mathbb{Z}$ est inversible ssi \overline{y} et \overline{z} le sont (vu la définition de l'anneau produit) donc

$$\operatorname{Card} U(\mathbb{Z}/p\mathbb{Z} \times \mathbb{Z}/q\mathbb{Z}) = \operatorname{Card} U(\mathbb{Z}/p\mathbb{Z}) \times \operatorname{Card}(U(\mathbb{Z}/q\mathbb{Z}))$$
$$= \varphi(p)\varphi(q) = (p-1)(q-1) = pq\left(1 - \frac{1}{p}\right)\left(1 - \frac{1}{q}\right) \blacksquare$$

(ii) Une application de cette dernière égalité est le codage RSA.

Questions:

- (i) Montrer que si $n \equiv 1$ $[\varphi(pq)]$ où p et q sont deux nombres premiers alors pour tout entier x on a $x^n \equiv x$ [pq] (utiliser la question (iii) page 181).
- (ii) Montrer que si α est un nombre premier avec $\varphi(pq)$ et si β est un nombre tel que $\alpha\beta \equiv 1 \ [\varphi(pq)]$ alors l'application

$$\mathcal{C}: x \in \mathbb{Z}/pq\mathbb{Z} \mapsto x^{\alpha} \in \mathbb{Z}/pq\mathbb{Z}$$

admet comme application réciproque

$$\mathcal{D}: x \in \mathbb{Z}/pq\mathbb{Z} \mapsto x^{\beta} \in \mathbb{Z}/pq\mathbb{Z}.$$

C'est le principe du codage RSA, en effet on donne le nombre α et le produit pq. Le codage est alors facile (on utilise l'algorithme d'exponentiation rapide) mais si on ne connaît pas les nombres p et q alors (pour p et q très grand) il est impossible de déterminer β . En effet il faut connaître $\varphi(pq)$ pour déterminer β . Dans la pratique on choisira des nombres α et β les plus petits possible.

1.2.4 Idéaux de $\mathbb{K}[X]$

On reprend dans ce paragraphe l'étude qui a été faite sur $\mathbb Z$ pour l'appliquer à $\mathbb K[X]$.

Théorème 1.10. Idéaux de $\mathbb{K}[X]$

Les idéaux de $\mathbb{K}[X]$ sont de la forme $P\mathbb{K}[X]$ où P est un polynôme de $\mathbb{K}[X]$ (on dit que $\mathbb{K}[X]$ est un anneau principal).

Dém:

- On sait que $P\mathbb{K}[X]$ est un sous-groupe de $\mathbb{K}[X]$. Il est facile de vérifier qu'il est stable par produit d'un élément de $\mathbb{K}[X]$ donc c'est bien un idéal.
- Soit $\mathcal{I} \neq \{0\}$ un idéal de $\mathbb{K}[X]$, $E = \{\deg Q, \ Q \in \mathcal{I} \setminus \{0\}\} \subset \mathbb{N}^*$, $E \neq \emptyset$. Soit $p = \inf E$ et $P \in \mathbb{K}[X]$ de degré p. Si $Q \in \mathcal{I}$, Q = PK + R (division euclidienne de Q par P) alors $R = Q - PK \in \mathcal{I}$ et deg $R < \deg P$ donc R = 0 soit $Q \in P\mathbb{K}[X]$.

Conclusion : les idéaux de $\mathbb{K}[X]$ sont de la forme $\mathcal{I} = P\mathbb{K}[X]$

Proposition 1.2.10. Caractérisation du P.G.C.D. et du P.P.C.M.

- (i) $(D = P \wedge Q) \Leftrightarrow (D\mathbb{K}[X] = P\mathbb{K}[X] + Q\mathbb{K}[X], D \text{ unitaire}).$
- (ii) $(M = P \vee Q) \Leftrightarrow (M\mathbb{K}[X] = P\mathbb{K}[X] \cap Q\mathbb{K}[X], M \text{ unitaire}).$

Dém : c'est la même chose que pour la proposition 1.2.6 page 178 :

(i) (\Rightarrow) D'après le théorème de Bézout, on sait qu'il existe U et V dans \mathbb{Z} tels que D = PU + QV. On a donc

$$\forall K \in \mathbb{K}[X], \ D.K \in P\mathbb{K}[X] + Q\mathbb{K}[X] = \{PU' + QV', \ (U', V') \in \mathbb{K}[X]^2\}$$

et par conséquent $D\mathbb{K}[X] \subset P\mathbb{K}[X] + Q\mathbb{K}[X]$.

Inclusion dans l'autre sens : D|P et D|Q entraı̂ne $P\mathbb{K}[X] \subset D\mathbb{K}[X]$ et $Q\mathbb{K}[X] \subset D\mathbb{K}[X]$ (propriété de la divisibilité) par conséquent on obtient $P\mathbb{K}[X] + Q\mathbb{K}[X] \subset D\mathbb{K}[X]$ car $D\mathbb{K}[X]$ est un sous-groupe de $\mathbb{K}[X]$.

(\Leftarrow) si $D\mathbb{K}[X] = P\mathbb{K}[X] + Q\mathbb{K}[X]$, soit $D' = P \land Q$, on vient de prouver que $D'\mathbb{K}[X] = P\mathbb{K}[X] + Q\mathbb{K}[X]$ donc $D'\mathbb{K}[X] = D\mathbb{K}[X]$. On en déduit que D|D' et D'|D (toujours les propriétés de la divisibilité) soit D = K'D' et D' = KD. Or D' et D sont unitaires donc D = K'KD soit K'K = 1 avec K' et K' unitaires (examiner les termes de plus haut degré dans les produits D = K'D' et D' = KD) soit K = K' = 1.

Conclusion : on a bien D = D' i.e. $D = P \wedge Q$.

(ii) (\Rightarrow) On a M = KP = K'Q donc $M \in P\mathbb{K}[X] \cap Q\mathbb{K}[X]$ d'où on déduit $M\mathbb{K}[X] \subset P\mathbb{K}[X] \cap Q\mathbb{K}[X]$ car $P\mathbb{K}[X] \cap Q\mathbb{K}[X]$ est un sous-groupe de $\mathbb{K}[X]$. Inclusion dans l'autre sens : $P\mathbb{K}[X] \cap Q\mathbb{K}[X] = M'\mathbb{K}[X]$ ($P\mathbb{K}[X] \cap Q\mathbb{K}[X]$ est un idéal donc il est engendré par un élément $M' \in \mathbb{K}[X]$). M' est un multiple commun à P et Q. Or $M\mathbb{K}[X] \subset M'\mathbb{K}[X]$ i.e. M = KM' et $\deg M' \geqslant \deg M$ car M est le plus petit commun multiple de P et Q donc K = 1 soit M = M'. (\Leftarrow) Si $M\mathbb{K}[X] = P\mathbb{K}[X] \cap Q\mathbb{K}[X]$, soit $M' = P \vee Q$, on vient de prouver que $M'\mathbb{K}[X] = P\mathbb{K}[X] \cap Q\mathbb{K}[X]$ donc $M'\mathbb{K}[X] = M\mathbb{K}[X]$ d'où M = M' car on a supposé M0 unitaire (même argument que pour le P.G.C.D.)

Exemples d'applications :

- (i) Théorème de Bézout : si $P \wedge Q = 1$ alors $P\mathbb{K}[X] + Q\mathbb{K}[X] = \mathbb{K}[X]$.
- (ii) Théorème de Gauss : si $QR\mathbb{K}[X] \subset P\mathbb{K}[X]$ et $P\mathbb{K}[X] + Q\mathbb{K}[X] = \mathbb{K}[X]$ alors $R\mathbb{K}[X] \subset P\mathbb{K}[X]$.

Questions:

(i) Montrer l'équivalence

$$D = P_1 \wedge (P_2 \wedge P_3) \Leftrightarrow D\mathbb{K}[X] = P_1\mathbb{K}[X] + P_2\mathbb{K}[X] + P_3\mathbb{K}[X].$$

Généraliser.

- (ii) Déterminer $\mathcal{I}.\mathcal{J}$ lorsque $\mathcal{I} = P\mathbb{K}[X]$ et $\mathcal{J} = Q\mathbb{K}[X]$ (cf. question (ii) page 178).
- (iii) Soit P, Q, R trois polynômes de $\mathbb{C}[X]$, on suppose $Q \wedge R = 1$ et $P^2 = Q^2 + R^2$. Montrer qu'il existe P_1 et P_2 2 polynômes premiers entre eux tels que

$$Q = \frac{1}{2}[P_1^2 + P_2^2], \ R = \frac{1}{2i}[P_1^2 - P_2^2].$$